Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 6: 20086, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26833023

ABSTRACT

Streptomyces thermoautotrophicus UBT1 has been described as a moderately thermophilic chemolithoautotroph with a novel nitrogenase enzyme that is oxygen-insensitive. We have cultured the UBT1 strain, and have isolated two new strains (H1 and P1-2) of very similar phenotypic and genetic characters. These strains show minimal growth on ammonium-free media, and fail to incorporate isotopically labeled N2 gas into biomass in multiple independent assays. The sdn genes previously published as the putative nitrogenase of S. thermoautotrophicus have little similarity to anything found in draft genome sequences, published here, for strains H1 and UBT1, but share >99% nucleotide identity with genes from Hydrogenibacillus schlegelii, a draft genome for which is also presented here. H. schlegelii similarly lacks nitrogenase genes and is a non-diazotroph. We propose reclassification of the species containing strains UBT1, H1, and P1-2 as a non-Streptomycete, non-diazotrophic, facultative chemolithoautotroph and conclude that the existence of the previously proposed oxygen-tolerant nitrogenase is extremely unlikely.


Subject(s)
Genes, Bacterial , Nitrogen Fixation , Streptomyces/genetics , Streptomyces/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Isotope Labeling , Nitrogen/metabolism , Nitrogenase/genetics , Nitrogenase/metabolism , Sequence Homology, Nucleic Acid
2.
Genome Biol ; 14(2): R17, 2013 Feb 20.
Article in English | MEDLINE | ID: mdl-23425606

ABSTRACT

BACKGROUND: The sinorhizobia are amongst the most well studied members of nitrogen-fixing root nodule bacteria and contribute substantial amounts of fixed nitrogen to the biosphere. While the alfalfa symbiont Sinorhizobium meliloti RM 1021 was one of the first rhizobial strains to be completely sequenced, little information is available about the genomes of this large and diverse species group. RESULTS: Here we report the draft assembly and annotation of 48 strains of Sinorhizobium comprising five genospecies. While S. meliloti and S. medicae are taxonomically related, they displayed different nodulation patterns on diverse Medicago host plants, and have differences in gene content, including those involved in conjugation and organic sulfur utilization. Genes involved in Nod factor and polysaccharide biosynthesis, denitrification and type III, IV, and VI secretion systems also vary within and between species. Symbiotic phenotyping and mutational analyses indicated that some type IV secretion genes are symbiosis-related and involved in nitrogen fixation efficiency. Moreover, there is a correlation between the presence of type IV secretion systems, heme biosynthesis and microaerobic denitrification genes, and symbiotic efficiency. CONCLUSIONS: Our results suggest that each Sinorhizobium strain uses a slightly different strategy to obtain maximum compatibility with a host plant. This large genome data set provides useful information to better understand the functional features of five Sinorhizobium species, especially compatibility in legume-Sinorhizobium interactions. The diversity of genes present in the accessory genomes of members of this genus indicates that each bacterium has adopted slightly different strategies to interact with diverse plant genera and soil environments.


Subject(s)
Genome, Bacterial , Phylogeny , Sinorhizobium/genetics , Bacterial Secretion Systems/genetics , Lipopolysaccharides/biosynthesis , Lipopolysaccharides/genetics , Nitrogen Fixation/genetics , Sinorhizobium/classification , Symbiosis/genetics
3.
Theor Appl Genet ; 124(1): 63-74, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21901547

ABSTRACT

Recent advances in whole genome sequencing (WGS) have allowed identification of genes for disease susceptibility in humans. The objective of our research was to exploit whole genome sequences of 13 rice (Oryza sativa L.) inbred lines to identify non-synonymous SNPs (nsSNPs) and candidate genes for resistance to sheath blight, a disease of worldwide significance. WGS by the Illumina GA IIx platform produced an average 5× coverage with ~700 K variants detected per line when compared to the Nipponbare reference genome. Two filtering strategies were developed to identify nsSNPs between two groups of known resistant and susceptible lines. A total of 333 nsSNPs detected in the resistant lines were absent in the susceptible group. Selected variants associated with resistance were found in 11 of 12 chromosomes. More than 200 genes with selected nsSNPs were assigned to 42 categories based on gene family/gene ontology. Several candidate genes belonged to families reported in previous studies, and three new regions with novel candidates were also identified. A subset of 24 nsSNPs detected in 23 genes was selected for further study. Individual alleles of the 24 nsSNPs were evaluated by PCR whose presence or absence corresponded to known resistant or susceptible phenotypes of nine additional lines. Sanger sequencing confirmed presence of 12 selected nsSNPs in two lines. "Resistant" nsSNP alleles were detected in two accessions of O. nivara that suggests sources for resistance occur in additional Oryza sp. Results from this study provide a foundation for future basic research and marker-assisted breeding of rice for sheath blight resistance.


Subject(s)
Disease Resistance/genetics , Genes, Plant , Genome, Plant , Oryza/genetics , Plant Diseases/genetics , Chromosomes, Plant , Genotype , Oryza/microbiology , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Rhizoctonia/physiology
4.
Proc Natl Acad Sci U S A ; 108(42): E864-70, 2011 Oct 18.
Article in English | MEDLINE | ID: mdl-21949378

ABSTRACT

Medicago truncatula is a model for investigating legume genetics, including the genetics and evolution of legume-rhizobia symbiosis. We used whole-genome sequence data to identify and characterize sequence polymorphisms and linkage disequilibrium (LD) in a diverse collection of 26 M. truncatula accessions. Our analyses reveal that M. truncatula harbors both higher diversity and less LD than soybean (Glycine max) and exhibits patterns of LD and recombination similar to Arabidopsis thaliana. The population-scaled recombination rate is approximately one-third of the mutation rate, consistent with expectations for a species with a high selfing rate. Linkage disequilibrium, however, is not extensive, and therefore, the low recombination rate is likely not a major constraint to adaptation. Nucleotide diversity in 100-kb windows was negatively correlated with gene density, which is expected if diversity is shaped by selection acting against slightly deleterious mutations. Among putative coding regions, members of four gene families harbor significantly higher diversity than the genome-wide average. Three of these families are involved in resistance against pathogens; one of these families, the nodule-specific, cysteine-rich gene family, is specific to the galegoid legumes and is involved in control of rhizobial differentiation. The more than 3 million SNPs that we detected, approximately one-half of which are present in more than one accession, are a valuable resource for genome-wide association mapping of genes responsible for phenotypic diversity in legumes, especially traits associated with symbiosis and nodulation.


Subject(s)
Medicago truncatula/genetics , DNA, Plant/genetics , Fabaceae/genetics , Genetic Variation , Genome, Plant , Genome-Wide Association Study , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Recombination, Genetic
5.
Plant Biotechnol J ; 9(8): 922-31, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21615673

ABSTRACT

Chickpea (Cicer arietinum L.) is an important legume crop in the semi-arid regions of Asia and Africa. Gains in crop productivity have been low however, particularly because of biotic and abiotic stresses. To help enhance crop productivity using molecular breeding techniques, next generation sequencing technologies such as Roche/454 and Illumina/Solexa were used to determine the sequence of most gene transcripts and to identify drought-responsive genes and gene-based molecular markers. A total of 103,215 tentative unique sequences (TUSs) have been produced from 435,018 Roche/454 reads and 21,491 Sanger expressed sequence tags (ESTs). Putative functions were determined for 49,437 (47.8%) of the TUSs, and gene ontology assignments were determined for 20,634 (41.7%) of the TUSs. Comparison of the chickpea TUSs with the Medicago truncatula genome assembly (Mt 3.5.1 build) resulted in 42,141 aligned TUSs with putative gene structures (including 39,281 predicted intron/splice junctions). Alignment of ∼37 million Illumina/Solexa tags generated from drought-challenged root tissues of two chickpea genotypes against the TUSs identified 44,639 differentially expressed TUSs. The TUSs were also used to identify a diverse set of markers, including 728 simple sequence repeats (SSRs), 495 single nucleotide polymorphisms (SNPs), 387 conserved orthologous sequence (COS) markers, and 2088 intron-spanning region (ISR) markers. This resource will be useful for basic and applied research for genome analysis and crop improvement in chickpea.


Subject(s)
Chromosome Mapping/methods , Cicer/genetics , Gene Expression Profiling/methods , Genome, Plant , Africa , Asia , Cicer/metabolism , Cicer/physiology , Droughts , Energy Metabolism , Expressed Sequence Tags , Gene Expression Regulation, Plant , Gene Library , Genetic Markers , Genotype , Introns , Medicago truncatula/genetics , Microsatellite Repeats , Plant Roots/genetics , Polymorphism, Single Nucleotide , Sequence Alignment/methods , Stress, Physiological , Transcription Factors/genetics
6.
DNA Res ; 18(3): 153-64, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21565938

ABSTRACT

This study reports generation of large-scale genomic resources for pigeonpea, a so-called 'orphan crop species' of the semi-arid tropic regions. FLX/454 sequencing carried out on a normalized cDNA pool prepared from 31 tissues produced 494 353 short transcript reads (STRs). Cluster analysis of these STRs, together with 10 817 Sanger ESTs, resulted in a pigeonpea trancriptome assembly (CcTA) comprising of 127 754 tentative unique sequences (TUSs). Functional analysis of these TUSs highlights several active pathways and processes in the sampled tissues. Comparison of the CcTA with the soybean genome showed similarity to 10 857 and 16 367 soybean gene models (depending on alignment methods). Additionally, Illumina 1G sequencing was performed on Fusarium wilt (FW)- and sterility mosaic disease (SMD)-challenged root tissues of 10 resistant and susceptible genotypes. More than 160 million sequence tags were used to identify FW- and SMD-responsive genes. Sequence analysis of CcTA and the Illumina tags identified a large new set of markers for use in genetics and breeding, including 8137 simple sequence repeats, 12 141 single-nucleotide polymorphisms and 5845 intron-spanning regions. Genomic resources developed in this study should be useful for basic and applied research, not only for pigeonpea improvement but also for other related, agronomically important legumes.


Subject(s)
Cajanus/genetics , Genome, Plant , Gene Expression Profiling , Genetic Markers , Introns , Microsatellite Repeats , Multigene Family , Polymorphism, Single Nucleotide , Transcription, Genetic
7.
Sci Transl Med ; 3(65): 65ra4, 2011 Jan 12.
Article in English | MEDLINE | ID: mdl-21228398

ABSTRACT

Of 7028 disorders with suspected Mendelian inheritance, 1139 are recessive and have an established molecular basis. Although individually uncommon, Mendelian diseases collectively account for ~20% of infant mortality and ~10% of pediatric hospitalizations. Preconception screening, together with genetic counseling of carriers, has resulted in remarkable declines in the incidence of several severe recessive diseases including Tay-Sachs disease and cystic fibrosis. However, extension of preconception screening to most severe disease genes has hitherto been impractical. Here, we report a preconception carrier screen for 448 severe recessive childhood diseases. Rather than costly, complete sequencing of the human genome, 7717 regions from 437 target genes were enriched by hybrid capture or microdroplet polymerase chain reaction, sequenced by next-generation sequencing (NGS) to a depth of up to 2.7 gigabases, and assessed with stringent bioinformatic filters. At a resultant 160x average target coverage, 93% of nucleotides had at least 20x coverage, and mutation detection/genotyping had ~95% sensitivity and ~100% specificity for substitution, insertion/deletion, splicing, and gross deletion mutations and single-nucleotide polymorphisms. In 104 unrelated DNA samples, the average genomic carrier burden for severe pediatric recessive mutations was 2.8 and ranged from 0 to 7. The distribution of mutations among sequenced samples appeared random. Twenty-seven percent of mutations cited in the literature were found to be common polymorphisms or misannotated, underscoring the need for better mutation databases as part of a comprehensive carrier testing strategy. Given the magnitude of carrier burden and the lower cost of testing compared to treating these conditions, carrier screening by NGS made available to the general population may be an economical way to reduce the incidence of and ameliorate suffering associated with severe recessive childhood disorders.


Subject(s)
Genes, Recessive/genetics , Genetic Carrier Screening/methods , Genetic Testing/methods , Sequence Analysis, DNA/methods , Base Sequence , Child , Databases, Genetic , Female , Genetic Testing/economics , Genome, Human , Heterozygote , Humans , Molecular Sequence Data , Mutation , Pregnancy , Prenatal Diagnosis , Sequence Alignment , Sequence Analysis, DNA/economics
8.
PLoS Negl Trop Dis ; 4(10): e856, 2010 Oct 26.
Article in English | MEDLINE | ID: mdl-21049065

ABSTRACT

Mosquitoes rely on RNA interference (RNAi) as their primary defense against viral infections. To this end, the combination of RNAi and invertebrate cell culture systems has become an invaluable tool in studying virus-vector interactions. Nevertheless, a recent study failed to detect an active RNAi response to West Nile virus (WNV) infection in C6/36 (Aedes albopictus) cells, a mosquito cell line frequently used to study arthropod-borne viruses (arboviruses). Therefore, we sought to determine if WNV actively evades the host's RNAi response or if C6/36 cells have a dysfunctional RNAi pathway. C6/36 and Drosophila melanogaster S2 cells were infected with WNV (Flaviviridae), Sindbis virus (SINV, Togaviridae) and La Crosse virus (LACV, Bunyaviridae) and total RNA recovered from cell lysates. Small RNA (sRNA) libraries were constructed and subjected to high-throughput sequencing. In S2 cells, virus-derived small interfering RNAs (viRNAs) from all three viruses were predominantly 21 nt in length, a hallmark of the RNAi pathway. However, in C6/36 cells, viRNAs were primarily 17 nt in length from WNV infected cells and 26-27 nt in length in SINV and LACV infected cells. Furthermore, the origin (positive or negative viral strand) and distribution (position along viral genome) of S2 cell generated viRNA populations was consistent with previously published studies, but the profile of sRNAs isolated from C6/36 cells was altered. In total, these results suggest that C6/36 cells lack a functional antiviral RNAi response. These findings are analogous to the type-I interferon deficiency described in Vero (African green monkey kidney) cells and suggest that C6/36 cells may fail to accurately model mosquito-arbovirus interactions at the molecular level.


Subject(s)
Aedes/virology , Host-Pathogen Interactions , La Crosse virus/immunology , RNA Interference , Sindbis Virus/immunology , West Nile virus/immunology , Aedes/immunology , Animals , Cell Line , Expressed Sequence Tags , Gene Expression Profiling , La Crosse virus/growth & development , Sequence Analysis, DNA , Sindbis Virus/growth & development , West Nile virus/growth & development
9.
Nature ; 464(7293): 1351-6, 2010 Apr 29.
Article in English | MEDLINE | ID: mdl-20428171

ABSTRACT

Monozygotic or 'identical' twins have been widely studied to dissect the relative contributions of genetics and environment in human diseases. In multiple sclerosis (MS), an autoimmune demyelinating disease and common cause of neurodegeneration and disability in young adults, disease discordance in monozygotic twins has been interpreted to indicate environmental importance in its pathogenesis. However, genetic and epigenetic differences between monozygotic twins have been described, challenging the accepted experimental model in disambiguating the effects of nature and nurture. Here we report the genome sequences of one MS-discordant monozygotic twin pair, and messenger RNA transcriptome and epigenome sequences of CD4(+) lymphocytes from three MS-discordant, monozygotic twin pairs. No reproducible differences were detected between co-twins among approximately 3.6 million single nucleotide polymorphisms (SNPs) or approximately 0.2 million insertion-deletion polymorphisms. Nor were any reproducible differences observed between siblings of the three twin pairs in HLA haplotypes, confirmed MS-susceptibility SNPs, copy number variations, mRNA and genomic SNP and insertion-deletion genotypes, or the expression of approximately 19,000 genes in CD4(+) T cells. Only 2 to 176 differences in the methylation of approximately 2 million CpG dinucleotides were detected between siblings of the three twin pairs, in contrast to approximately 800 methylation differences between T cells of unrelated individuals and several thousand differences between tissues or between normal and cancerous tissues. In the first systematic effort to estimate sequence variation among monozygotic co-twins, we did not find evidence for genetic, epigenetic or transcriptome differences that explained disease discordance. These are the first, to our knowledge, female, twin and autoimmune disease individual genome sequences reported.


Subject(s)
Epigenesis, Genetic/genetics , Genome, Human/genetics , Multiple Sclerosis/genetics , RNA, Messenger/genetics , Twins, Monozygotic/genetics , Adolescent , Adult , Allelic Imbalance/genetics , Breast/metabolism , Breast Neoplasms/genetics , CD4-Positive T-Lymphocytes/metabolism , Case-Control Studies , CpG Islands/genetics , DNA Copy Number Variations/genetics , DNA Methylation/genetics , Female , Genetic Predisposition to Disease/genetics , Haplotypes/genetics , Heterozygote , Humans , INDEL Mutation/genetics , Lung/metabolism , Lung Neoplasms/genetics , Male , Polymorphism, Genetic/genetics , Quantitative Trait Loci/genetics , RNA, Messenger/analysis , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...