Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 11(485)2019 03 27.
Article in English | MEDLINE | ID: mdl-30918114

ABSTRACT

Cystic fibrosis (CF) is a multiorgan disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). In patients with CF, abnormalities initiate in several organs before birth. However, the long-term impact of these in utero pathologies on disease pathophysiology is unclear. To address this issue, we generated ferrets harboring a VX-770 (ivacaftor)-responsive CFTR G551D mutation. In utero VX-770 administration provided partial protection from developmental pathologies in the pancreas, intestine, and male reproductive tract. Homozygous CFTR G551D/G551D animals showed the greatest VX-770-mediated protection from these pathologies. Sustained postnatal VX-770 administration led to improved pancreatic exocrine function, glucose tolerance, growth and survival, and to reduced mucus accumulation and bacterial infections in the lung. VX-770 withdrawal at any age reestablished disease, with the most rapid onset of morbidity occurring when withdrawal was initiated during the first 2 weeks after birth. The results suggest that CFTR is important for establishing organ function early in life. Moreover, this ferret model provides proof of concept for in utero pharmacologic correction of genetic disease and offers opportunities for understanding CF pathogenesis and improving treatment.


Subject(s)
Aminophenols/administration & dosage , Chloride Channel Agonists/administration & dosage , Cystic Fibrosis/drug therapy , Quinolones/administration & dosage , Animals , Animals, Genetically Modified , Animals, Newborn , Blood Glucose/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis/physiopathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Disease Models, Animal , Disease Progression , Female , Ferrets , Gene Knock-In Techniques , Genitalia, Male/abnormalities , Genitalia, Male/drug effects , Gestational Age , Humans , Male , Mutation , Pancreas, Exocrine/drug effects , Pancreas, Exocrine/pathology , Pancreas, Exocrine/physiopathology , Pregnancy , Respiratory Tract Infections/etiology , Respiratory Tract Infections/prevention & control , Translational Research, Biomedical
2.
Bioorg Med Chem Lett ; 25(6): 1338-42, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25677667
3.
J Med Chem ; 57(8): 3382-400, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24673104

ABSTRACT

A structure-based drug design strategy was used to optimize a novel benzolactam series of HSP90α/ß inhibitors to achieve >1000-fold selectivity versus the HSP90 endoplasmic reticulum and mitochondrial isoforms (GRP94 and TRAP1, respectively). Selective HSP90α/ß inhibitors were found to be equipotent to pan-HSP90 inhibitors in promoting the clearance of mutant huntingtin protein (mHtt) in vitro, however with less cellular toxicity. Improved tolerability profiles may enable the use of HSP90α/ß selective inhibitors in treating chronic neurodegenerative indications such as Huntington's disease (HD). A potent, selective, orally available HSP90α/ß inhibitor was identified (compound 31) that crosses the blood-brain barrier. Compound 31 demonstrated proof of concept by successfully reducing brain Htt levels following oral dosing in rats.


Subject(s)
HSP90 Heat-Shock Proteins/antagonists & inhibitors , Huntington Disease/drug therapy , Animals , Drug Design , HSP90 Heat-Shock Proteins/chemistry , Humans , Male , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...