Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Artif Intell Educ ; 32(3): 501-503, 2022.
Article in English | MEDLINE | ID: mdl-35967263
2.
J Med Internet Res ; 21(1): e10793, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30664453

ABSTRACT

BACKGROUND: Patient portals are becoming more common, and with them, the ability of patients to access their personal electronic health records (EHRs). EHRs, in particular the free-text EHR notes, often contain medical jargon and terms that are difficult for laypersons to understand. There are many Web-based resources for learning more about particular diseases or conditions, including systems that directly link to lay definitions or educational materials for medical concepts. OBJECTIVE: Our goal is to determine whether use of one such tool, NoteAid, leads to higher EHR note comprehension ability. We use a new EHR note comprehension assessment tool instead of patient self-reported scores. METHODS: In this work, we compare a passive, self-service educational resource (MedlinePlus) with an active resource (NoteAid) where definitions are provided to the user for medical concepts that the system identifies. We use Amazon Mechanical Turk (AMT) to recruit individuals to complete ComprehENotes, a new test of EHR note comprehension. RESULTS: Mean scores for individuals with access to NoteAid are significantly higher than the mean baseline scores, both for raw scores (P=.008) and estimated ability (P=.02). CONCLUSIONS: In our experiments, we show that the active intervention leads to significantly higher scores on the comprehension test as compared with a baseline group with no resources provided. In contrast, there is no significant difference between the group that was provided with the passive intervention and the baseline group. Finally, we analyze the demographics of the individuals who participated in our AMT task and show differences between groups that align with the current understanding of health literacy between populations. This is the first work to show improvements in comprehension using tools such as NoteAid as measured by an EHR note comprehension assessment tool as opposed to patient self-reported scores.


Subject(s)
Comprehension/physiology , Crowdsourcing/methods , Electronic Health Records/standards , Health Literacy/standards , Patient Portals/standards , Female , Humans , Male
3.
Int J STEM Educ ; 5(1): 15, 2018.
Article in English | MEDLINE | ID: mdl-30631705

ABSTRACT

BACKGROUND: The Office of Naval Research (ONR) organized a STEM Challenge initiative to explore how intelligent tutoring systems (ITSs) can be developed in a reasonable amount of time to help students learn STEM topics. This competitive initiative sponsored four teams that separately developed systems that covered topics in mathematics, electronics, and dynamical systems. After the teams shared their progress at the conclusion of an 18-month period, the ONR decided to fund a joint applied project in the Navy that integrated those systems on the subject matter of electronic circuits. The University of Memphis took the lead in integrating these systems in an intelligent tutoring system called ElectronixTutor. This article describes the architecture of ElectronixTutor, the learning resources that feed into it, and the empirical findings that support the effectiveness of its constituent ITS learning resources. RESULTS: A fully integrated ElectronixTutor was developed that included several intelligent learning resources (AutoTutor, Dragoon, LearnForm, ASSISTments, BEETLE-II) as well as texts and videos. The architecture includes a student model that has (a) a common set of knowledge components on electronic circuits to which individual learning resources contribute and (b) a record of student performance on the knowledge components as well as a set of cognitive and non-cognitive attributes. There is a recommender system that uses the student model to guide the student on a small set of sensible next steps in their training. The individual components of ElectronixTutor have shown learning gains in previous decades of research. CONCLUSIONS: The ElectronixTutor system successfully combines multiple empirically based components into one system to teach a STEM topic (electronics) to students. A prototype of this intelligent tutoring system has been developed and is currently being tested. ElectronixTutor is unique in its assembling a group of well-tested intelligent tutoring systems into a single integrated learning environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...