Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Front Synaptic Neurosci ; 16: 1384625, 2024.
Article in English | MEDLINE | ID: mdl-38798824

ABSTRACT

Palmitoylation and depalmitoylation represent dichotomic processes by which a labile posttranslational lipid modification regulates protein trafficking and degradation. The depalmitoylating enzyme, palmitoyl-protein thioesterase 1 (PPT1), is associated with the devastating pediatric neurodegenerative condition, infantile neuronal ceroid lipofuscinosis (CLN1). CLN1 is characterized by the accumulation of autofluorescent lysosomal storage material (AFSM) in neurons and robust neuroinflammation. Converging lines of evidence suggest that in addition to cellular waste accumulation, the symptomology of CLN1 corresponds with disruption of synaptic processes. Indeed, loss of Ppt1 function in cortical neurons dysregulates the synaptic incorporation of the GluA1 AMPA receptor (AMPAR) subunit during a type of synaptic plasticity called synaptic scaling. However, the mechanisms causing this aberration are unknown. Here, we used the Ppt1-/- mouse model (both sexes) to further investigate how Ppt1 regulates synaptic plasticity and how its disruption affects downstream signaling pathways. To this end, we performed a palmitoyl-proteomic screen, which provoked the discovery that Akap5 is excessively palmitoylated at Ppt1-/- synapses. Extending our previous data, in vivo induction of synaptic scaling, which is regulated by Akap5, caused an excessive upregulation of GluA1 in Ppt1-/- mice. This synaptic change was associated with exacerbated disease pathology. Furthermore, the Akap5- and inflammation-associated transcriptional regulator, nuclear factor of activated T cells (NFAT), was sensitized in Ppt1-/- cortical neurons. Suppressing the upstream regulator of NFAT activation, calcineurin, with the FDA-approved therapeutic FK506 (Tacrolimus) modestly improved neuroinflammation in Ppt1-/- mice. These findings indicate that the absence of depalmitoylation stifles synaptic protein trafficking and contributes to neuroinflammation via an Akap5-associated mechanism.

2.
eNeuro ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331575

ABSTRACT

Alzheimer's Disease (AD) is associated with brain accumulation of synaptotoxic amyloid-ß (Aß) peptides produced by the proteolytic processing of amyloid precursor protein (APP). Cognitive impairments associated with AD correlate with dendritic spine and excitatory synapse loss, particularly within the hippocampus. In rodents, soluble Aß oligomers impair hippocampus-dependent learning and memory, promote dendritic spine loss, inhibit NMDA-type glutamate receptor (NMDAR)-dependent long-term potentiation (LTP), and promote synaptic depression (LTD), at least in part through activation of the Ca2+-CaM-dependent phosphatase calcineurin (CaN). Yet, questions remain regarding Aß-dependent postsynaptic CaN signaling specifically at the synapse to mediate its synaptotoxicity. Here, we use pharmacologic and genetic approaches to demonstrate a role for postsynaptic signaling via A kinase-anchoring protein 150 (AKAP150)-scaffolded CaN in mediating Aß-induced dendritic spine loss in hippocampal neurons from rats and mice of both sexes. In particular, we found that Ca2+-permeable AMPA-type glutamate receptors (CP-AMPARs), which were previously shown to signal through AKAP-anchored CaN to promote both LTD and Aß-dependent inhibition of LTP, are also required upstream of AKAP-CaN signaling to mediate spine loss via overexpression of APP containing multiple mutations linked to familial, early-onset AD and increased Aß production. In addition, we found that the CaN-dependent nuclear factor of activated T-cells (NFAT) transcription factors are required downstream to promote Aß-mediated dendritic spine loss. Finally, we identified the E3-ubiquitin ligase Mdm2, which was previously linked to LTD and developmental synapse elimination, as a downstream NFAT target gene upregulated by Aß whose enzymatic activity is required for Aß-mediated spine loss.Significance Statement Impaired hippocampal function and synapse loss are hallmarks of AD linked to Aß oligomers. Aß exposure acutely blocks hippocampal LTP and enhances LTD and chronically leads to dendritic spine synapse loss. In particular, Aß hijacks normal plasticity mechanisms, biasing them toward synapse weakening/elimination, with previous studies broadly linking CaN phosphatase signaling to this synaptic dysfunction. However, we do not understand how Aß engages signaling specifically at synapses. Here we elucidate a synapse-to-nucleus signaling pathway coordinated by the postsynaptic scaffold protein AKAP150 that is activated by Ca2+ influx through CP-AMPARs and transduced to nucleus by CaN-NFAT signaling to transcriptionally upregulate the E3-ubiquitin ligase Mdm2 that is required for Aß-mediated spine loss. These findings identify Mdm2 as potential therapeutic target for AD.

3.
Mol Cell Neurosci ; 98: 19-31, 2019 07.
Article in English | MEDLINE | ID: mdl-31059774

ABSTRACT

EPAC2 is a guanine nucleotide exchange factor that regulates GTPase activity of the small GTPase Rap and Ras and is highly enriched at synapses. Activation of EPAC2 has been shown to induce dendritic spine shrinkage and increase spine motility, effects that are necessary for synaptic plasticity. These morphological effects are dysregulated by rare mutations of Epac2 associated with autism spectrum disorders. In addition, EPAC2 destabilizes synapses through the removal of synaptic GluA2/3-containing AMPA receptors. Previous work has shown that Epac2 knockout mice (Epac2-/-) display abnormal social interactions, as well as gross disorganization of the frontal cortex and abnormal spine motility in vivo. In this study we sought to further understand the cellular consequences of knocking out Epac2 on the development of neuronal and synaptic structure and organization of cortical neurons. Using primary cortical neurons generated from Epac2+/+ or Epac2-/- mice, we confirm that EPAC2 is required for cAMP-dependent spine shrinkage. Neurons from Epac2-/- mice also displayed increased synaptic expression of GluA2/3-containing AMPA receptors, as well as of the adhesion protein N-cadherin. Intriguingly, analysis of excitatory and inhibitory synaptic proteins revealed that loss of EPAC2 resulted in altered expression of vesicular GABA transporter (VGAT) but not vesicular glutamate transporter 1 (VGluT1), indicating an altered ratio of excitatory and inhibitory synapses onto neurons. Finally, examination of cortical neurons located within the anterior cingulate cortex further revealed subtle deficits in the establishment of dendritic arborization in vivo. These data provide evidence that loss of EPAC2 enhances the stability of excitatory synapses and increases the number of inhibitory inputs.


Subject(s)
Dendritic Spines/physiology , Guanine Nucleotide Exchange Factors/genetics , Inhibitory Postsynaptic Potentials , Synapses/physiology , Animals , Cadherins/genetics , Cadherins/metabolism , Cells, Cultured , Dendritic Spines/metabolism , Dendritic Spines/pathology , Excitatory Postsynaptic Potentials , Guanine Nucleotide Exchange Factors/metabolism , Gyrus Cinguli/cytology , Gyrus Cinguli/metabolism , Gyrus Cinguli/physiology , Male , Mice , Mice, Inbred C57BL , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Synapses/metabolism , Vesicular Inhibitory Amino Acid Transport Proteins/genetics , Vesicular Inhibitory Amino Acid Transport Proteins/metabolism
4.
Mol Pharmacol ; 95(1): 20-32, 2019 01.
Article in English | MEDLINE | ID: mdl-30404891

ABSTRACT

Calcineurin (CaN) phosphatase signaling is regulated by targeting CaN to substrates, inhibitors, and scaffold proteins containing docking motifs with the consensus sequence of PxIxIT. Here, we identify the docking of CaN to the γ isoform of MKK7, a component of the c-Jun N-terminal kinase (JNK) pathway. Because of alternative splicing of a single exon within the N-terminal domain, MKK7γ encodes a unique PxIxIT motif (PIIVIT) that is not present in MKK7α or ß We found that MKK7γ bound directly to CaN through this PIIVIT motif in vitro, immunoprecipitated with CaN from cell extracts, and exhibited fluorescence resonance energy transfer (FRET) with CaN in the cytoplasm but not in the nucleus of living cells. In contrast, MKK7α and ß exhibited no direct binding or FRET with CaN and were localized more in the nucleus than the cytoplasm. Furthermore, the inhibition of CaN phosphatase activity increased the basal phosphorylation of MKK7γ but not MKK7ß Deletion of the MKK7γ PIIVIT motif eliminated FRET with CaN and promoted MKK7γ redistribution to the nucleus; however, the inhibition of CaN activity did not alter MKK7γ localization, indicating that MKK7γ cytoplasmic retention by CaN is phosphatase activity independent. Finally, the inhibition of CaN phosphatase activity in vascular smooth muscle cells, which express MKK7γ mRNA, enhances JNK activation. Overall, we conclude that the MKK7γ-specific PxIxIT motif promotes high-affinity CaN binding that could promote novel cross talk between CaN and JNK signaling by limiting MKK7γ phosphorylation and restricting its localization to the cytoplasm.


Subject(s)
MAP Kinase Kinase 7/metabolism , Phosphoric Monoester Hydrolases/metabolism , Protein Binding/physiology , Protein Isoforms/metabolism , Alternative Splicing/physiology , Amino Acid Sequence , Animals , Binding Sites/physiology , COS Cells , Cell Line , Cell Nucleus/metabolism , Chlorocebus aethiops , Cytoplasm/metabolism , HEK293 Cells , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Phosphorylation/physiology , Signal Transduction/physiology
5.
Cell Rep ; 25(4): 974-987.e4, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30355502

ABSTRACT

Ca2+-permeable AMPA-type glutamate receptors (CP-AMPARs) containing GluA1 but lacking GluA2 subunits contribute to multiple forms of synaptic plasticity, including long-term potentiation (LTP), but mechanisms regulating CP-AMPARs are poorly understood. A-kinase anchoring protein (AKAP) 150 scaffolds kinases and phosphatases to regulate GluA1 phosphorylation and trafficking, and trafficking of AKAP150 itself is modulated by palmitoylation on two Cys residues. Here, we developed a palmitoylation-deficient knockin mouse to show that AKAP150 palmitoylation regulates CP-AMPAR incorporation at hippocampal synapses. Using biochemical, super-resolution imaging, and electrophysiological approaches, we found that palmitoylation promotes AKAP150 localization to recycling endosomes and the postsynaptic density (PSD) to limit CP-AMPAR basal synaptic incorporation. In addition, we found that AKAP150 palmitoylation is required for LTP induced by weaker stimulation that recruits CP-AMPARs to synapses but not stronger stimulation that recruits GluA2-containing AMPARs. Thus, AKAP150 palmitoylation controls its subcellular localization to maintain proper basal and activity-dependent regulation of synaptic AMPAR subunit composition.


Subject(s)
A Kinase Anchor Proteins/metabolism , Calcium/metabolism , Cell Membrane Permeability , Lipoylation , Long-Term Potentiation , Receptors, AMPA/metabolism , Synapses/metabolism , Animals , Cyclic AMP-Dependent Protein Kinases/metabolism , Dendritic Spines/metabolism , Endosomes/metabolism , Mice, Inbred C57BL , Synaptic Transmission
6.
J Biol Chem ; 293(41): 15901-15911, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30158247

ABSTRACT

Palmitoylation is a reversible post-translational addition of a 16-carbon lipid chain involved in trafficking and compartmentalizing target proteins. It is important for many cellular functions, including signaling via membrane-localized estrogen receptors (ERs). Within the nervous system, palmitoylation of ERα is necessary for membrane surface localization and mediation of downstream signaling through the activation of metabotropic glutamate receptors (mGluRs). Substitution of the single palmitoylation site on ERα prevents its physical association with the integral membrane protein caveolin-1 (CAV1), required for the formation of the ER/mGluR signaling complex. Interestingly, siRNA knockdown of either of two palmitoyl acyltransferases, zinc finger DHHC type-containing 7 (DHHC7) or DHHC21, also eliminates this signaling mechanism. Because ERα has only one palmitoylation site, we hypothesized that one of these DHHCs palmitoylates CAV1. We investigated this possibility by using an acyl-biotin exchange assay in HEK293 cells in conjunction with DHHC overexpression and found that DHHC7 increases CAV1 palmitoylation. Substitution of the palmitoylation sites on CAV1 eliminated this effect but did not disrupt the ability of the DHHC enzyme to associate with CAV1. In contrast, siRNA-mediated knockdown of DHHC7 alone was not sufficient to decrease CAV1 palmitoylation but rather required simultaneous knockdown of DHHC21. These findings provide additional information about the overall influence of palmitoylation on the membrane-initiated estrogen signaling pathway and highlight the importance of considering the influence of palmitoylation on other CAV1-dependent processes.


Subject(s)
Acyltransferases/metabolism , Caveolin 1/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Acetyltransferases , Acyltransferases/genetics , Animals , Cyclic AMP Response Element-Binding Protein/metabolism , Female , Gene Knockdown Techniques , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Lipoylation , Protein Processing, Post-Translational , Rats, Sprague-Dawley
8.
J Biol Chem ; 293(5): 1551-1567, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29196604

ABSTRACT

Both long-term potentiation (LTP) and depression (LTD) of excitatory synapse strength require the Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) and its autonomous activity generated by Thr-286 autophosphorylation. Additionally, LTP and LTD are correlated with dendritic spine enlargement and shrinkage that are accompanied by the synaptic accumulation or removal, respectively, of the AMPA-receptor regulatory scaffold protein A-kinase anchoring protein (AKAP) 79/150. We show here that the spine shrinkage associated with LTD indeed requires synaptic AKAP79/150 removal, which in turn requires CaMKII activity. In contrast to normal CaMKII substrates, the substrate sites within the AKAP79/150 N-terminal polybasic membrane-cytoskeletal targeting domain were phosphorylated more efficiently by autonomous compared with Ca2+/CaM-stimulated CaMKII activity. This unusual regulation was mediated by Ca2+/CaM binding to the substrate sites resulting in protection from phosphorylation in the presence of Ca2+/CaM, a mechanism that favors phosphorylation by prolonged, weak LTD stimuli versus brief, strong LTP stimuli. Phosphorylation by CaMKII inhibited AKAP79/150 association with F-actin; it also facilitated AKAP79/150 removal from spines but was not required for it. By contrast, LTD-induced spine removal of AKAP79/150 required its depalmitoylation on two Cys residues within the N-terminal targeting domain. Notably, such LTD-induced depalmitoylation was also blocked by CaMKII inhibition. These results provide a mechanism how CaMKII can indeed mediate not only LTP but also LTD through regulated substrate selection; however, in the case of AKAP79/150, indirect CaMKII effects on palmitoylation are more important than the effects of direct phosphorylation. Additionally, our results provide the first direct evidence for a function of the well-described AKAP79/150 trafficking in regulating LTD-induced spine shrinkage.


Subject(s)
A Kinase Anchor Proteins/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Lipoylation , Long-Term Potentiation , Long-Term Synaptic Depression , Protein Processing, Post-Translational , Spine/metabolism , Synapses/metabolism , Animals , Humans , Spine/pathology , Synapses/pathology
9.
Neural Plast ; 2016: 3025948, 2016.
Article in English | MEDLINE | ID: mdl-26989514

ABSTRACT

Structural plasticity of excitatory synapses is a vital component of neuronal development, synaptic plasticity, and behaviour. Abnormal development or regulation of excitatory synapses has also been strongly implicated in many neurodevelopmental, psychiatric, and neurodegenerative disorders. In the mammalian forebrain, the majority of excitatory synapses are located on dendritic spines, specialized dendritic protrusions that are enriched in actin. Research over recent years has begun to unravel the complexities involved in the regulation of dendritic spine structure. The small GTPase family of proteins have emerged as key regulators of structural plasticity, linking extracellular signals with the modulation of dendritic spines, which potentially underlies their ability to influence cognition. Here we review a number of studies that examine how small GTPases are activated and regulated in neurons and furthermore how they can impact actin dynamics, and thus dendritic spine morphology. Elucidating this signalling process is critical for furthering our understanding of the basic mechanisms by which information is encoded in neural circuits but may also provide insight into novel targets for the development of effective therapies to treat cognitive dysfunction seen in a range of neurological disorders.


Subject(s)
Brain/cytology , Brain/physiology , Dendritic Spines/physiology , Monomeric GTP-Binding Proteins/physiology , Neuronal Plasticity , Neurons/cytology , Neurons/physiology , Animals , Brain/metabolism , Dendritic Spines/metabolism , Humans , Microfilament Proteins/metabolism , Microfilament Proteins/physiology , Monomeric GTP-Binding Proteins/metabolism , Neurons/metabolism , Signal Transduction
10.
J Biol Chem ; 290(48): 28604-12, 2015 Nov 27.
Article in English | MEDLINE | ID: mdl-26453308

ABSTRACT

A central theme in nervous system function is equilibrium: synaptic strengths wax and wane, neuronal firing rates adjust up and down, and neural circuits balance excitation with inhibition. This push/pull regulatory theme carries through to the molecular level at excitatory synapses, where protein function is controlled through phosphorylation and dephosphorylation by kinases and phosphatases. However, these opposing enzymatic activities are only part of the equation as scaffolding interactions and assembly of multi-protein complexes are further required for efficient, localized synaptic signaling. This review will focus on coordination of postsynaptic serine/threonine kinase and phosphatase signaling by scaffold proteins during synaptic plasticity.


Subject(s)
Nerve Tissue Proteins/metabolism , Neuronal Plasticity/physiology , Phosphoprotein Phosphatases/metabolism , Protein Serine-Threonine Kinases/metabolism , Synaptic Transmission/physiology , Animals , Humans , Phosphorylation/physiology
11.
J Neurosci ; 35(2): 442-56, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25589740

ABSTRACT

Phosphorylation and dephosphorylation of AMPA-type ionotropic glutamate receptors (AMPARs) by kinases and phosphatases and interactions with scaffold proteins play essential roles in regulating channel biophysical properties and trafficking events that control synaptic strength during NMDA receptor-dependent synaptic plasticity, such as LTP and LTD. We previously demonstrated that palmitoylation of the AMPAR-linked scaffold protein A-kinase anchoring protein (AKAP) 79/150 is required for its targeting to recycling endosomes in dendrites, where it regulates exocytosis from these compartments that is required for LTP-stimulated enlargement of postsynaptic dendritic spines, delivery of AMPARs to the plasma membrane, and maintenance of synaptic potentiation. Here, we report that the recycling endosome-resident palmitoyl acyltransferase DHHC2 interacts with and palmitoylates AKAP79/150 to regulate these plasticity signaling mechanisms. In particular, RNAi-mediated knockdown of DHHC2 expression in rat hippocampal neurons disrupted stimulation of exocytosis from recycling endosomes, enlargement of dendritic spines, AKAP recruitment to spines, and potentiation of AMPAR-mediated synaptic currents that occur during LTP. Importantly, expression of a palmitoylation-independent lipidated AKAP mutant in DHHC2-deficient neurons largely restored normal plasticity regulation. Thus, we conclude that DHHC2-AKAP79/150 signaling is an essential regulator of dendritic recycling endosome exocytosis that controls both structural and functional plasticity at excitatory synapses.


Subject(s)
A Kinase Anchor Proteins/metabolism , Acyltransferases/metabolism , Endosomes/metabolism , Exocytosis , Long-Term Potentiation , Acyltransferases/genetics , Animals , COS Cells , Cells, Cultured , Chlorocebus aethiops , Dendritic Spines/metabolism , Female , HEK293 Cells , Hippocampus/cytology , Hippocampus/metabolism , Humans , Lipoylation , Male , Rats , Rats, Sprague-Dawley , Synapses/metabolism , Synapses/physiology
12.
Pharmacol Rev ; 65(4): 1318-50, 2013.
Article in English | MEDLINE | ID: mdl-24076546

ABSTRACT

Converging evidence from cellular, electrophysiological, anatomic, and behavioral studies suggests that the remodeling of synapse structure and function is a critical component of cognition. This modulation of neuroplasticity can be achieved through the actions of numerous extracellular signals. Moreover, it is thought that it is the integration of different extracellular signals regulation of neuroplasticity that greatly influences cognitive function. One group of signals that exerts powerful effects on multiple neurologic processes is estrogens. Classically, estrogens have been described to exert their effects over a period of hours to days. However, there is now increasing evidence that estrogens can rapidly influence multiple behaviors, including those that require forebrain neural circuitry. Moreover, these effects are found in both sexes. Critically, it is now emerging that the modulation of cognition by rapid estrogenic signaling is achieved by activation of specific signaling cascades and regulation of synapse structure and function, cumulating in the rewiring of neural circuits. The importance of understanding the rapid effects of estrogens on forebrain function and circuitry is further emphasized as investigations continue to consider the potential of estrogenic-based therapies for neuropathologies. This review focuses on how estrogens can rapidly influence cognition and the emerging mechanisms that underlie these effects. We discuss the potential sources and the biosynthesis of estrogens within the brain and the consequences of rapid estrogenic-signaling on the remodeling of neural circuits. Furthermore, we argue that estrogens act via distinct signaling pathways to modulate synapse structure and function in a manner that may vary with cell type, developmental stage, and sex. Finally, we present a model in which the coordination of rapid estrogenic-signaling and activity-dependent stimuli can result in long-lasting changes in neural circuits, contributing to cognition, with potential relevance for the development of novel estrogenic-based therapies for neurodevelopmental or neurodegenerative disorders.


Subject(s)
Brain/physiology , Estrogens/physiology , Neuronal Plasticity , Animals , Behavior/drug effects , Estrogens/pharmacology , Humans , Neurons/physiology , Receptors, Estrogen/physiology , Synapses/physiology
13.
J Biol Chem ; 287(43): 35964-74, 2012 Oct 19.
Article in English | MEDLINE | ID: mdl-22948147

ABSTRACT

The dendritic field of a neuron, which is determined by both dendritic architecture and synaptic strength, defines the synaptic input of a cell. Once established, a neuron's dendritic field is thought to remain relatively stable throughout a cell's lifetime. Perturbations in a dendritic structure or excitatory tone of a cell and thus its dendritic field are cellular alterations thought to be correlated with a number of psychiatric disorders. Although several proteins are known to regulate the development of dendritic arborization, much less is known about the mechanisms that maintain dendritic morphology and synaptic strength. In this study, we find that afadin, a component of N-cadherin·ß-catenin·α-N-catenin adhesion complexes, is required for the maintenance of established dendritic arborization and synapse number. We further demonstrate that afadin directly interacts with AMPA receptors and that loss of this protein reduces the surface expression of GluA1- and GluA2-AMPA receptor subunits. Collectively, these data suggest that afadin is required for the maintenance of dendritic structure and excitatory tone.


Subject(s)
Dendrites/metabolism , LIM Domain Proteins/metabolism , Microfilament Proteins/metabolism , Receptors, AMPA/metabolism , Synapses/metabolism , Animals , Cadherins/genetics , Cadherins/metabolism , Cells, Cultured , Dendrites/genetics , Gene Expression Regulation/physiology , LIM Domain Proteins/genetics , Microfilament Proteins/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Rats , Rats, Sprague-Dawley , Receptors, AMPA/genetics , Synapses/genetics , alpha Catenin/genetics , alpha Catenin/metabolism , beta Catenin/genetics , beta Catenin/metabolism
14.
J Neurosci ; 32(34): 11864-78, 2012 Aug 22.
Article in English | MEDLINE | ID: mdl-22915127

ABSTRACT

Deficits in social and communication behaviors are common features of a number of neurodevelopmental disorders. However, the molecular and cellular substrates of these higher order brain functions are not well understood. Here we report that specific alterations in social and communication behaviors in mice occur as a result of loss of the EPAC2 gene, which encodes a protein kinase A-independent cAMP target. Epac2-deficient mice exhibited robust deficits in social interactions and ultrasonic vocalizations, but displayed normal olfaction, working and reference memory, motor abilities, anxiety, and repetitive behaviors. Epac2-deficient mice displayed abnormal columnar organization in the anterior cingulate cortex, a region implicated in social behavior in humans, but not in somatosensory cortex. In vivo two-photon imaging revealed reduced dendritic spine motility and density on cortical neurons in Epac2-deficient mice, indicating deficits at the synaptic level. Together, these findings provide novel insight into the molecular and cellular substrates of social and communication behavior.


Subject(s)
Dendritic Spines/genetics , Guanine Nucleotide Exchange Factors/deficiency , Neurons/cytology , Social Behavior , Somatosensory Cortex/cytology , Vocalization, Animal/physiology , Animals , Dendritic Spines/physiology , Exploratory Behavior/physiology , Female , Green Fluorescent Proteins/metabolism , Guanine Nucleotide Exchange Factors/genetics , Locomotion/genetics , Male , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Statistics, Nonparametric
15.
PLoS Biol ; 10(6): e1001350, 2012.
Article in English | MEDLINE | ID: mdl-22745599

ABSTRACT

The architecture of dendritic arbors determines circuit connectivity, receptive fields, and computational properties of neurons, and dendritic structure is impaired in several psychiatric disorders. While apical and basal dendritic compartments of pyramidal neurons are functionally specialized and differentially regulated, little is known about mechanisms that selectively maintain basal dendrites. Here we identified a role for the Ras/Epac2 pathway in maintaining basal dendrite complexity of cortical neurons. Epac2 is a guanine nucleotide exchange factor (GEF) for the Ras-like small GTPase Rap, and it is highly enriched in the adult mouse brain. We found that in vivo Epac2 knockdown in layer 2/3 cortical neurons via in utero electroporation reduced basal dendritic architecture, and that Epac2 knockdown in mature cortical neurons in vitro mimicked this effect. Overexpression of an Epac2 rare coding variant, found in human subjects diagnosed with autism, also impaired basal dendritic morphology. This mutation disrupted Epac2's interaction with Ras, and inhibition of Ras selectively interfered with basal dendrite maintenance. Finally, we observed that components of the Ras/Epac2/Rap pathway exhibited differential abundance in the basal versus apical dendritic compartments. These findings define a role for Epac2 in enabling crosstalk between Ras and Rap signaling in maintaining basal dendrite complexity, and exemplify how rare coding variants, in addition to their disease relevance, can provide insight into cellular mechanisms relevant for brain connectivity.


Subject(s)
Autistic Disorder/genetics , Dendrites/metabolism , Guanine Nucleotide Exchange Factors/genetics , Signal Transduction , Animals , Autistic Disorder/metabolism , Cell Communication , Female , Guanine Nucleotide Exchange Factors/metabolism , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Neurons/metabolism , Rats , Rats, Sprague-Dawley , ras Proteins
16.
J Neurosci ; 32(21): 7119-36, 2012 May 23.
Article in English | MEDLINE | ID: mdl-22623657

ABSTRACT

NMDA receptor-dependent long-term potentiation (LTP) and depression (LTD) are forms of synaptic plasticity underlying learning and memory that are expressed through increases and decreases, respectively, in dendritic spine size and AMPA receptor (AMPAR) phosphorylation and postsynaptic localization. The A-kinase anchoring protein 79/150 (AKAP79/150) signaling scaffold regulates AMPAR phosphorylation, channel activity, and endosomal trafficking associated with LTP and LTD. AKAP79/150 is targeted to dendritic spine plasma membranes by an N-terminal polybasic domain that binds phosphoinositide lipids, F-actin, and cadherin cell adhesion molecules. However, we do not understand how regulation of AKAP targeting controls AMPAR endosomal trafficking. Here, we report that palmitoylation of the AKAP N-terminal polybasic domain targets it to postsynaptic lipid rafts and dendritic recycling endosomes. AKAP palmitoylation was regulated by seizure activity in vivo and LTP/LTD plasticity-inducing stimuli in cultured rat hippocampal neurons. With chemical LTP induction, we observed AKAP79 dendritic spine recruitment that required palmityolation and Rab11-regulated endosome recycling coincident with spine enlargement and AMPAR surface delivery. Importantly, a palmitoylation-deficient AKAP79 mutant impaired regulation of spine size, endosome recycling, AMPAR trafficking, and synaptic potentiation. These findings emphasize the emerging importance of palmitoylation in controlling synaptic function and reveal novel roles for the AKAP79/150 signaling complex in dendritic endosomes.


Subject(s)
A Kinase Anchor Proteins/physiology , Dendrites/metabolism , Endosomes/metabolism , Neuronal Plasticity/physiology , Protein Transport/physiology , A Kinase Anchor Proteins/genetics , A Kinase Anchor Proteins/metabolism , Animals , COS Cells , Cells, Cultured , Chlorocebus aethiops , Dendritic Spines/ultrastructure , Female , Gene Knockdown Techniques , Hippocampus/metabolism , Hippocampus/physiology , Kainic Acid/pharmacology , Lipoylation/physiology , Long-Term Potentiation/physiology , Long-Term Synaptic Depression/physiology , Male , Rats , Rats, Sprague-Dawley , Rats, Wistar , Receptors, AMPA/metabolism , Seizures/chemically induced , Seizures/metabolism , Seizures/physiopathology
17.
J Vis Exp ; (53): e2794, 2011 Jul 13.
Article in English | MEDLINE | ID: mdl-21775964

ABSTRACT

Dendritic spines are the sites of the majority of excitatory connections within the brain, and form the post-synaptic compartment of synapses. These structures are rich in actin and have been shown to be highly dynamic. In response to classical Hebbian plasticity as well as neuromodulatory signals, dendritic spines can change shape and number, which is thought to be critical for the refinement of neural circuits and the processing and storage of information within the brain. Within dendritic spines, a complex network of proteins link extracellular signals with the actin cyctoskeleton allowing for control of dendritic spine morphology and number. Neuropathological studies have demonstrated that a number of disease states, ranging from schizophrenia to autism spectrum disorders, display abnormal dendritic spine morphology or numbers. Moreover, recent genetic studies have identified mutations in numerous genes that encode synaptic proteins, leading to suggestions that these proteins may contribute to aberrant spine plasticity that, in part, underlie the pathophysiology of these disorders. In order to study the potential role of these proteins in controlling dendritic spine morphologies/number, the use of cultured cortical neurons offers several advantages. Firstly, this system allows for high-resolution imaging of dendritic spines in fixed cells as well as time-lapse imaging of live cells. Secondly, this in vitro system allows for easy manipulation of protein function by expression of mutant proteins, knockdown by shRNA constructs, or pharmacological treatments. These techniques allow researchers to begin to dissect the role of disease-associated proteins and to predict how mutations of these proteins may function in vivo.


Subject(s)
Cerebral Cortex/ultrastructure , Dendritic Spines/ultrastructure , Animals , Cytological Techniques , Embryo, Mammalian , Female , Immunohistochemistry , Microscopy, Confocal , Pregnancy , Rats , Rats, Sprague-Dawley
18.
Nat Neurosci ; 14(3): 285-93, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21346746

ABSTRACT

Substantial progress has been made toward understanding the genetic architecture, cellular substrates, brain circuits and endophenotypic profiles of neuropsychiatric disorders, including autism spectrum disorders (ASD), schizophrenia and Alzheimer's disease. Recent evidence implicates spiny synapses as important substrates of pathogenesis in these disorders. Although synaptic perturbations are not the only alterations relevant for these diseases, understanding the molecular underpinnings of spine pathology may provide insight into their etiologies and may reveal new drug targets. Here we discuss recent neuropathological, genetic, molecular and animal model studies that implicate structural alterations at spiny synapses in the pathogenesis of major neurological disorders, focusing on ASD, schizophrenia and Alzheimer's disease as representatives of these categories across different ages of onset. We stress the importance of reverse translation, collaborative and multidisciplinary approaches, and the study of the spatio-temporal roles of disease molecules in the context of synaptic regulatory pathways and neuronal circuits that underlie disease endophenotypes.


Subject(s)
Dendritic Spines/pathology , Nervous System Diseases/pathology , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Animals , Humans , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nervous System Diseases/genetics , Nervous System Diseases/physiopathology , Schizophrenia/genetics , Schizophrenia/pathology , Schizophrenia/physiopathology
19.
Mol Cell Neurosci ; 46(2): 368-80, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21115118

ABSTRACT

In the mammalian forebrain, most glutamatergic excitatory synapses occur on small dendritic protrusions called dendritic spines. Dendritic spines are highly plastic and can rapidly change morphology in response to numerous stimuli. This dynamic remodeling of dendritic spines is thought to be critical for information processing, memory and cognition. Conversely, multiple studies have revealed that neuropathologies such as autism spectrum disorders (ASDs) are linked with alterations in dendritic spine morphologies and miswiring of neural circuitry. One compelling hypothesis is that abnormal dendritic spine remodeling is a key contributing factor for this miswiring. Ongoing research has identified a number of mechanisms that are critical for the control of dendritic spine remodeling. Among these mechanisms, regulation of small GTPase signaling by guanine-nucleotide exchange factors (GEFs) is emerging as a critical mechanism for integrating physiological signals in the control of dendritic spine remodeling. Furthermore, multiple proteins associated with regulation of dendritic spine remodeling have also been implicated with multiple neuropathologies, including ASDs. Epac2, a GEF for the small GTPase Rap, has recently been described as a novel cAMP (yet PKA-independent) target localized to dendritic spines. Signaling via this protein in response to pharmacological stimulation or cAMP accumulation, via the dopamine D1/5 receptor, results in Rap activation, promotes structural destabilization, in the form of dendritic spine shrinkage, and functional depression due to removal of GluR2/3-containing AMPA receptors. In addition, Epac2 forms macromolecular complexes with ASD-associated proteins, which are sufficient to regulate Epac2 localization and function. Furthermore, rare non-synonymous variants of the EPAC2 gene associated with the ASD phenotype alter protein function, synaptic protein distribution, and spine morphology. We review here the role of Epac2 in the remodeling of dendritic spines under normal conditions, the mechanisms that underlie these effects, and the implications these disease-associated variants have on our understanding of the pathophysiology of ASD.


Subject(s)
Dendritic Spines/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Neuronal Plasticity/physiology , Prosencephalon/metabolism , Animals , Child , Child Development Disorders, Pervasive/pathology , Child Development Disorders, Pervasive/physiopathology , Humans
20.
J Neurosci ; 30(40): 13454-60, 2010 Oct 06.
Article in English | MEDLINE | ID: mdl-20926671

ABSTRACT

Brain-synthesized estrogen has been shown to influence synaptic structure, function, and cognitive processes. However, the molecular mechanisms underlying the rapid effects of estrogen on the dendritic spines of cortical neurons are not clear. Estrogen receptor ß (ERß) is expressed in cortical neurons, and ERß knock-out mice display impaired performance in cortically mediated processes, suggesting that signaling via this receptor has profound effects on cortical neuron function. However, the effect of rapid signaling via ERß on dendritic spines and the signaling pathways initiated by this receptor in cortical neurons are unknown. Here, we show that activation of ERß with the specific agonist WAY-200070 results in increased spine density and PSD-95 (postsynaptic density-95) accumulation in membrane regions. Activation of ERß by WAY-200070 also resulted in the phosphorylation of p21-activated kinase (PAK) and extracellular signal-regulated kinase 1/2 (ERK1/2) in cultured cortical neurons, suggesting a mechanism for the regulation of the actin cytoskeleton. Moreover, we found that aromatase, an enzyme critical for estrogen production, is present at presynaptic termini, supporting a role for brain-synthesized estrogen as a neuromodulator in the cortex. These results implicate ERß signaling in controlling dendritic spine morphology, in part via a PAK/ERK1/2-dependent pathway, and provide mechanistic insight into the rapid cellular effects of estrogen on brain function.


Subject(s)
Cerebral Cortex/metabolism , Dendritic Spines/metabolism , Estrogen Receptor beta/physiology , Estrogens/metabolism , Synaptic Transmission/physiology , Animals , Cells, Cultured , Cerebral Cortex/drug effects , Dendritic Spines/drug effects , Disks Large Homolog 4 Protein , Estrogen Receptor Modulators/pharmacology , Estrogen Receptor beta/agonists , Estrogens/agonists , Intracellular Signaling Peptides and Proteins/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/drug effects , Membrane Proteins/metabolism , Microscopy, Confocal , Oxazoles/pharmacology , Phenols/pharmacology , Rats , Rats, Sprague-Dawley , Synapses/drug effects , Synapses/metabolism , Synaptic Transmission/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...