Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Cell Physiol ; 318(6): C1226-C1237, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32348180

ABSTRACT

The ubiquitous calpains, calpain-1 and -2, play important roles in Ca2+-dependent membrane repair. Mechanically active tissues like skeletal muscle are particularly reliant on mechanisms to repair and remodel membrane injury, such as those caused by eccentric damage. We demonstrate that calpain-1 and -2 are master effectors of Ca2+-dependent repair of mechanical plasma membrane scrape injuries, although they are dispensable for repair/removal of small wounds caused by pore-forming agents. Using CRISPR gene-edited human embryonic kidney 293 (HEK293) cell lines, we established that loss of both calpains-1 and -2 (CAPNS1-/-) virtually ablates Ca2+-dependent repair of mechanical scrape injuries but does not affect injury or recovery from perforation by streptolysin-O or saponin. In contrast, cells with targeted knockout of either calpain-1 (CAPN1-/-) or -2 (CAPN2-/-) show near-normal repair of mechanical injuries, inferring that both calpain-1 and calpain-2 are equally capable of conducting the cascade of proteolytic cleavage events to reseal a membrane injury, including that of the known membrane repair agent dysferlin. A severe muscular dystrophy in a murine model with skeletal muscle knockout of Capns1 highlights vital roles for calpain-1 and/or -2 for health and viability of skeletal muscles not compensated for by calpain-3 (CAPN3). We propose that the dystrophic phenotype relates to loss of maintenance of plasma membrane/cytoskeletal networks by calpains-1 and -2 in response to directed and dysfunctional Ca2+-signaling, pathways hyperstimulated in the context of membrane injury. With CAPN1 variants associated with spastic paraplegia, a severe dystrophy observed with muscle-specific loss of calpain-1 and -2 activity identifies CAPN2 and CAPNS1 as plausible candidate neuromuscular disease genes.


Subject(s)
Calpain/deficiency , Cell Membrane/enzymology , Muscle, Skeletal/enzymology , Muscular Dystrophies, Limb-Girdle/enzymology , Muscular Dystrophy, Animal/enzymology , Animals , Bacterial Proteins/pharmacology , Calcium Signaling , Calpain/genetics , Cell Membrane/drug effects , Cell Membrane/pathology , Disease Models, Animal , Dysferlin/deficiency , Dysferlin/genetics , Female , HEK293 Cells , Humans , Male , Mice, Knockout , Muscle, Skeletal/pathology , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/pathology , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/pathology , Saponins/pharmacology , Severity of Illness Index , Streptolysins/pharmacology
2.
J Biol Chem ; 292(45): 18577-18591, 2017 11 10.
Article in English | MEDLINE | ID: mdl-28904177

ABSTRACT

Dysferlin is a large transmembrane protein that plays a key role in cell membrane repair and underlies a recessive form of inherited muscular dystrophy. Dysferlinopathy is characterized by absence or marked reduction of dysferlin protein with 43% of reported pathogenic variants being missense variants that span the length of the dysferlin protein. The unique structure of dysferlin, with seven tandem C2 domains separated by linkers, suggests dysferlin may dynamically associate with phospholipid membranes in response to Ca2+ signaling. However, the overall conformation of the dysferlin protein is uncharacterized. To dissect the structural architecture of dysferlin, we have applied the method of limited proteolysis, which allows nonspecific digestion of unfolded peptides by trypsin. Using five antibodies spanning the dysferlin protein, we identified a highly reproducible jigsaw map of dysferlin fragments protected from digestion. Our data infer a modular architecture of four tertiary domains: 1) C2A, which is readily removed as a solo domain; 2) midregion C2B-C2C-Fer-DysF, commonly excised as an intact module, with subdigestion to different fragments suggesting several dynamic folding options; 3) C-terminal four-C2 domain module; and 4) calpain-cleaved mini-dysferlinC72, which is particularly resistant to proteolysis. Importantly, we reveal a patient missense variant, L344P, that largely escapes proteasomal surveillance and shows subtle but clear changes in tertiary conformation. Accompanying evidence from immunohistochemistry and flow cytometry using antibodies with conformationally sensitive epitopes supports proteolysis data. Collectively, we provide insight into the structural topology of dysferlin and show how a single missense mutation within dysferlin can exert local changes in tertiary conformation.


Subject(s)
Dysferlin/genetics , Muscle, Skeletal/metabolism , Muscular Dystrophies/genetics , Mutation, Missense , Proteasome Endopeptidase Complex/metabolism , Amino Acid Substitution , Biopsy , C2 Domains , Calpain/genetics , Calpain/metabolism , Cells, Cultured , Dysferlin/chemistry , Dysferlin/metabolism , HEK293 Cells , Humans , Molecular Weight , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/pathology , Muscular Dystrophies/metabolism , Muscular Dystrophies/pathology , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Conformation , Protein Folding , Protein Interaction Domains and Motifs , Protein Structure, Tertiary , Proteolysis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
3.
Cell Signal ; 33: 30-40, 2017 05.
Article in English | MEDLINE | ID: mdl-28192161

ABSTRACT

Myoferlin and dysferlin are closely related members of the ferlin family of Ca2+-regulated vesicle fusion proteins. Dysferlin is proposed to play a role in Ca2+-triggered vesicle fusion during membrane repair. Myoferlin regulates endocytosis, recycling of growth factor receptors and adhesion proteins, and is linked to the metastatic potential of cancer cells. Our previous studies establish that dysferlin is cleaved by calpains during membrane injury, with the cleavage motif encoded by alternately-spliced exon 40a. Herein we describe the cleavage of myoferlin, yielding a membrane-associated dual C2 domain 'mini-myoferlin'. Myoferlin bears two enzymatic cleavage sites: a canonical cleavage site encoded by exon 38 within the C2DE domain; and a second cleavage site in the linker adjacent to C2DE, encoded by alternately-spliced exon 38a, homologous to dysferlin exon 40a. Both myoferlin cleavage sites, when introduced into dysferlin, can functionally substitute for exon 40a to confer Ca2+-triggered calpain cleavage in response to membrane injury. However, enzymatic cleavage of myoferlin is complex, showing both constitutive or Ca2+-enhanced cleavage in different cell lines, that is not solely dependent on calpains-1 or -2. The functional impact of myoferlin cleavage was explored through signalling protein phospho-protein arrays revealing specific activation of ERK1/2 by ectopic expression of cleavable myoferlin, but not an uncleavable isoform. In summary, we molecularly define two enzymatic cleavage sites within myoferlin and demonstrate 'mini-myoferlin' can be detected in human breast cancer tumour samples and cell lines. These data further illustrate that enzymatic cleavage of ferlins is an evolutionarily preserved mechanism to release functionally specialized mini-modules.


Subject(s)
Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/metabolism , Calpain/metabolism , MAP Kinase Signaling System , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Muscle Proteins/chemistry , Muscle Proteins/metabolism , Amino Acid Sequence , Animals , Cell Line, Tumor , Dysferlin/chemistry , Dysferlin/metabolism , HEK293 Cells , Humans , Mice , Models, Molecular , Phosphorylation , Protein Domains , Proteolysis , Transfection
4.
Blood ; 120(4): 778-88, 2012 Jul 26.
Article in English | MEDLINE | ID: mdl-22677126

ABSTRACT

Macrophages are key target cells for HIV-1. HIV-1(BaL) induced a subset of interferon-stimulated genes in monocyte-derived macrophages (MDMs), which differed from that in monocyte-derived dendritic cells and CD4 T cells, without inducing any interferons. Inhibition of type I interferon induction was mediated by HIV-1 inhibition of interferon-regulated factor (IRF3) nuclear translocation. In MDMs, viperin was the most up-regulated interferon-stimulated genes, and it significantly inhibited HIV-1 production. HIV-1 infection disrupted lipid rafts via viperin induction and redistributed viperin to CD81 compartments, the site of HIV-1 egress by budding in MDMs. Exogenous farnesol, which enhances membrane protein prenylation, reversed viperin-mediated inhibition of HIV-1 production. Mutagenesis analysis in transfected cell lines showed that the internal S-adenosyl methionine domains of viperin were essential for its antiviral activity. Thus viperin may contribute to persistent noncytopathic HIV-1 infection of macrophages and possibly to biologic differences with HIV-1-infected T cells.


Subject(s)
HIV Infections/virology , HIV-1/pathogenicity , Macrophages/virology , Monocytes/virology , Proteins/metabolism , Virus Replication , Amino Acid Sequence , Antiviral Agents/metabolism , Biomarkers/metabolism , Blotting, Western , Dendritic Cells/cytology , Dendritic Cells/metabolism , Dendritic Cells/virology , Farnesol/pharmacology , Flow Cytometry , Gene Expression Profiling , HIV Infections/metabolism , HIV Infections/pathology , HIV-1/genetics , Humans , Immunoenzyme Techniques , Immunoprecipitation , Interferons/metabolism , Macrophages/cytology , Macrophages/metabolism , Molecular Sequence Data , Monocytes/cytology , Monocytes/metabolism , Mutagenesis, Site-Directed , Mutation/genetics , Oligonucleotide Array Sequence Analysis , Oxidoreductases Acting on CH-CH Group Donors , Protein Prenylation , Proteins/antagonists & inhibitors , Proteins/genetics , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...