Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Invest Radiol ; 56(2): 86-93, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33405430

ABSTRACT

MATERIALS AND METHODS: Stenotic kidney (STK) and contralateral kidney magnetization transfer ratios (MTRs; Mt/M0) were measured at 3.0-T magnetic resonance imaging, at offset frequencies of 600 and 1000 Hz, before and 1 month post-PTRA in 7 RVD pigs. Stenotic kidney MTR was correlated to renal perfusion, renal blood flow (RBF), and glomerular filtration rate (GFR), determined using multidetector computed tomography and with ex vivo renal fibrosis (trichrome staining). Untreated RVD (n = 6) and normal pigs (n = 7) served as controls. RESULTS: Renovascular disease induced hypertension and renal dysfunction. Blood pressure and renal perfusion were unchanged post-PTRA, but GFR and RBF increased. Baseline cortical STK-MTR predicted post-PTRA renal perfusion and RBF, and MTR changes associated inversely with changes in perfusion and normalized GFR. Stenotic kidney MTR at 600 Hz showed closer association with renal parameters, but both frequencies predicted post-PTRA cortical fibrosis. CONCLUSIONS: Renal STK-MTR, particularly at 600 Hz offset, is sensitive to hemodynamic changes after PTRA in swine RVD and capable of noninvasively predicting post-PTRA kidney perfusion, RBF, and fibrosis. Therefore, STK-MTR may be a valuable tool to predict renal hemodynamic and functional recovery, as well as residual kidney fibrosis after revascularization in RVD.


Subject(s)
Renal Artery Obstruction , Animals , Glomerular Filtration Rate , Kidney/diagnostic imaging , Kidney/surgery , Magnetic Resonance Imaging , Renal Artery Obstruction/diagnostic imaging , Renal Artery Obstruction/surgery , Renal Circulation , Swine
2.
Front Cell Dev Biol ; 8: 197, 2020.
Article in English | MEDLINE | ID: mdl-32274385

ABSTRACT

BACKGROUND: Chronic inflammatory conditions like obesity may adversely impact the biological functions underlying the regenerative potential of mesenchymal stromal/stem cells (MSC). Obesity can impair MSC function by inducing cellular senescence, a growth-arrest program that transitions cells to a pro-inflammatory state. However, the effect of obesity on adipose tissue-derived MSC in human subjects remains unclear. We tested the hypothesis that obesity induces senescence and dysfunction in human MSC. METHODS: MSC were harvested from abdominal subcutaneous fat collected from obese and age-matched non-obese subjects (n = 40) during bariatric or kidney donation surgeries, respectively. MSC were characterized, their migration and proliferation assessed, and cellular senescence evaluated by gene expression of cell-cycle arrest and senescence-associated secretory phenotype markers. In vitro studies tested MSC effect on injured human umbilical vein endothelial cells (HUVEC) function. RESULTS: Mean age was 59 ± 8 years, 66% were females. Obese subjects had higher body-mass index (BMI) than non-obese. MSC from obese subjects exhibited lower proliferative capacities than non-obese-MSC, suggesting decreased function, whereas their migration remained unchanged. Senescent cell burden and phenotype, manifested as p16, p53, IL-6, and MCP-1 gene expression, were significantly upregulated in obese subjects' MSC. BMI correlated directly with expression of p16, p21, and IL-6. Furthermore, co-incubation with non-obese, but not with obese-MSC, restored VEGF expression and tube formation that were blunted in injured HUVEC. CONCLUSION: Human obesity triggers an early senescence program in adipose tissue-derived MSC. Thus, obesity-induced cellular injury may alter efficacy of this endogenous repair system and hamper the feasibility of autologous transplantation in obese individuals.

3.
Cell Transplant ; 29: 963689720917342, 2020.
Article in English | MEDLINE | ID: mdl-32237997

ABSTRACT

Endothelial progenitor cells (EPCs) patrols the circulation and contributes to endothelial cell regeneration. Atherosclerotic renal artery stenosis (ARAS) induces microvascular loss in the stenotic kidney (STK). Low-energy shockwave therapy (SW) can induce angiogenesis and restore the STK microcirculation, but the underlying mechanism remains unclear. We tested the hypothesis that SW increases EPC homing to the swine STK, associated with capillary regeneration. Normal pigs and pigs after 3 wk of renal artery stenosis were treated with six sessions of low-energy SW (biweekly for three consecutive weeks) or left untreated. Four weeks after completion of treatment, we assessed EPC (CD34+/KDR+) numbers and levels of the homing-factor stromal cell-derived factor (SDF)-1 in the inferior vena cava and the STK vein and artery, as well as urinary levels of vascular endothelial growth factor (VEGF) and integrin-1ß. Subsequently, we assessed STK morphology, capillary count, and expression of the proangiogenic growth factors angiopoietin-1, VEGF, and endothelial nitric oxide synthase ex vivo. A 3-wk low-energy SW regimen improved STK structure, capillary count, and function in ARAS+SW, and EPC numbers and gradients across the STK decreased. Plasma SDF-1 and renal expression of angiogenic factors were increased in ARAS+SW, and urinary levels of VEGF and integrin-1ß tended to rise during the SW regimen. In conclusion, SW improves ischemic kidney capillary density, which is associated with, and may be at least in part mediated by, promoting EPCs mobilization and homing to the stenotic kidney.


Subject(s)
Constriction, Pathologic/pathology , Endothelial Progenitor Cells/cytology , Kidney/pathology , Renal Artery Obstruction/therapy , Animals , Ischemia/therapy , Kidney/blood supply , Renal Artery Obstruction/physiopathology , Renal Circulation/physiology , Swine
4.
Hypertension ; 75(5): 1223-1232, 2020 05.
Article in English | MEDLINE | ID: mdl-32223383

ABSTRACT

Metabolic syndrome (MetS) profoundly changes the contents of mesenchymal stem cells and mesenchymal stem cells-derived extracellular vesicles (EVs). The anti-inflammatory TGF-ß (transforming growth factor-ß) is selectively enriched in EVs from Lean but not from MetS pigs, but the functional impact of this endowment remains unknown. We hypothesized that Lean-EVs more effectively induce regulatory T cells in injured kidneys. Five groups of pigs (n=7 each) were studied after 16 weeks of diet-induced MetS and unilateral renal artery stenosis (RAS; MetS+RAS). Two groups of MetS+RAS were treated 4 weeks earlier with an intrarenal injection of either Lean-EVs or MetS-EVs. MetS+RAS had lower renal volume, renal blood flow, and glomerular filtration rate than MetS pigs. Compared with Lean-EVs, MetS-EVs were less effective in improving renal function and decreasing tubular injury and fibrosis in MetS+RAS. Lean-EVs upregulated TGF-ß expression in stenotic kidney and increased regulatory T cells numbers more prominently. Furthermore, markedly upregulated anti-inflammatory M2 macrophages reduced proinflammatory M1 macrophages, and CD8+ T cells were detected in stenotic kidneys treated with Lean-EVs compared with MetS-EVs, and renal vein levels of interleukin-1ß were reduced. In vitro, coculture of Lean-EVs with activated T cells led to greater TGF-ß-dependent regulatory T cells induction than did MetS-EVs. Therefore, the beneficial effects of mesenchymal stem cells-derived EVs on injured kidneys might be partly mediated by their content of TGF-ß signaling components, which permitting increased Treg preponderance. Modulating EV cargo and transforming their functionality might be useful for renal repair.


Subject(s)
Extracellular Vesicles , Metabolic Syndrome/complications , Renal Artery Obstruction/complications , Renal Insufficiency, Chronic/therapy , T-Lymphocytes, Regulatory/immunology , Animals , Coculture Techniques , Cytokines/blood , Dietary Carbohydrates/toxicity , Dietary Fats/toxicity , Extracellular Vesicles/chemistry , Female , Inflammation , Infusions, Intra-Arterial , Metabolic Syndrome/blood , MicroRNAs/analysis , MicroRNAs/pharmacology , Monocytes/cytology , Monocytes/immunology , Random Allocation , Renal Artery , Renal Artery Obstruction/blood , Renal Artery Obstruction/immunology , Renal Circulation , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/immunology , Signal Transduction/drug effects , Swine , T-Lymphocytes, Regulatory/cytology , Transforming Growth Factor beta/antagonists & inhibitors
5.
Circ Arrhythm Electrophysiol ; 13(4): e007614, 2020 04.
Article in English | MEDLINE | ID: mdl-32189516

ABSTRACT

BACKGROUND: Heart rate variability (HRV) and pulse rate variability are indices of autonomic cardiac modulation. Increased pericardial fat is associated with worse cardiovascular outcomes. We hypothesized that progressive increases in pericardial fat volume and inflammation prospectively dampen HRV in hypercholesterolemic pigs. METHODS: WT (wild type) or PCSK9 (proprotein convertase subtilisin-like/kexin type-9) gain-of-function Ossabaw mini-pigs were studied in vivo before and after 3 and 6 months of a normal diet (WT-normal diet, n=4; PCSK9-normal diet, n=6) or high-fat diet (HFD; WT-HFD, n=3; PCSK9-HFD, n=6). The arterial pulse waveform was obtained from an arterial telemetry transmitter to analyze HRV indices, including SD (SD of all pulse-to-pulse intervals over a single 5-minute period), root mean square of successive differences, proportion >50 ms of normal-to-normal R-R intervals, and the calculated ratio of low-to-high frequency distributions (low-frequency power/high-frequency power). Pericardial fat volumes were evaluated using multidetector computed tomography and its inflammation by gene expression of TNF (tumor necrosis factor)-α. Plasma lipid panel and norepinephrine level were also measured. RESULTS: At diet completion, hypercholesterolemic PCSK9-HFD had significantly (P<0.05 versus baseline) depressed HRV (SD of all pulse-to-pulse intervals over a single 5-minute period, root mean square of successive differences, proportion >50 ms, high-frequency power, low-frequency power), and both HFD groups had higher sympathovagal balance (SD of all pulse-to-pulse intervals over a single 5-minute period/root mean square of successive differences, low-frequency power/high-frequency power) compared with normal diet. Pericardial fat volumes and LDL (low-density lipoprotein) cholesterol concentrations correlated inversely with HRV and directly with sympathovagal balance, while sympathovagal balance correlated directly with plasma norepinephrine. Pericardial fat TNF-α expression was upregulated in PCSK9-HFD, colocalized with nerve fibers, and correlated inversely with root mean square of successive differences and proportion >50 ms. CONCLUSIONS: Progressive pericardial fat expansion and inflammation are associated with a fall in HRV in Ossabaw mini-pigs, implying aggravated autonomic imbalance. Hence, pericardial fat accumulation is associated with alterations in HRV and the autonomic nervous system. Visual Overview: A visual overview is available for this article.


Subject(s)
Adipose Tissue/physiopathology , Adiposity , Arrhythmias, Cardiac/etiology , Autonomic Nervous System/physiopathology , Heart Rate , Hypercholesterolemia/complications , Inflammation/etiology , Pericardium/physiopathology , Adipose Tissue/metabolism , Animals , Animals, Genetically Modified , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Autonomic Nervous System/metabolism , Cholesterol/blood , Disease Models, Animal , Hypercholesterolemia/metabolism , Hypercholesterolemia/physiopathology , Inflammation/metabolism , Inflammation/physiopathology , Inflammation Mediators/metabolism , Male , Norepinephrine/blood , Pericardium/metabolism , Swine , Swine, Miniature/genetics , Time Factors , Tumor Necrosis Factor-alpha/metabolism
6.
Biol Sex Differ ; 10(1): 49, 2019 09 14.
Article in English | MEDLINE | ID: mdl-31521202

ABSTRACT

BACKGROUND: Preeclampsia is a pregnancy-specific hypertensive disorder characterized by impaired angiogenesis. We postulate that senescence of mesenchymal stem cells (MSC), multipotent cells with pro-angiogenic activities, is one of the mechanisms by which systemic inflammation exerts inhibitory effects on angiogenesis in preeclampsia. METHODS: MSC were isolated from abdominal fat tissue explants removed during medically indicated C-sections from women with preeclampsia (PE-MSC, n = 10) and those with normotensive pregnancies (NP-MSC, n = 12). Sections of the frozen subcutaneous adipose tissue were assessed for inflammation by staining for tumor necrosis factor (TNF)-alpha and monocyte chemoattractant protein (MCP)-1. Viability, proliferation, and migration were compared between PE-MSC vs. NP-MSC. Apoptosis and angiogenesis were assayed before and after treatment with a senolytic agent (1 µM dasatinib) using the IncuCyte S3 Live-Cell Analysis System. Similarly, staining for senescence-associated beta galactosidase (SABG) and qPCR for gene expression of senescence markers, p16 and p21, as well as senescence-associated secretory phenotype (SASP) components, IL-6, IL-8, MCP-1, and PAI-1, were studied before and after treatment with dasatinib and compared between PE and NP. RESULTS: After in vitro exposure to TNF-alpha, MSC demonstrated upregulation of SASP components, including interleukins-6 and -8 and MCP-1. Staining of the subcutaneous adipose tissue sections revealed a greater inflammatory response in preeclampsia, based on the higher levels of both TNF-alpha and MCP-1 compared to normotensive pregnancies (p < 0.001 and 0.024, respectively). MSC isolated from PE demonstrated a lower percentage of live MSC cells (p = 0.012), lower proliferation (p = 0.005), and higher migration (p = 0.023). At baseline, PE-MSC demonstrated a senescent phenotype, reflected by more abundant staining for SABG (p < 0.001), upregulation of senescence markers and SASP components, as well as lower angiogenic potential (p < 0.001), compared to NP-MSC. Treatment with dasatinib increased significantly the number of apoptotic PE-MSC compared to NP-MSC (0.011 vs. 0.093) and decreased the gene expression of p16 and six SASP components. The mechanistic link between senescence and impaired angiogenesis in PE was confirmed by improved angiogenic potential of PE-MSC (p < 0.001) after dasatinib treatment. CONCLUSIONS: Our data suggest that MSC senescence exerts inhibitory effects on angiogenesis in preeclampsia. Senolytic agents may offer the opportunity for mechanism-based therapies.


Subject(s)
Cellular Senescence , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/physiology , Pre-Eclampsia , Adipose Tissue/cytology , Adult , Cell Movement , Cell Proliferation , Cell Survival , Dasatinib/pharmacology , Female , Humans , Pregnancy , Protein Kinase Inhibitors/pharmacology
7.
Am J Physiol Renal Physiol ; 317(5): F1142-F1153, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31461348

ABSTRACT

Scattered tubular-like cells (STCs) contribute to repair neighboring injured renal tubular cells. Mitochondria mediate STC biology and function but might be injured by the ambient milieu. We hypothesized that the microenviroment induced by the ischemic and metabolic components of renovascular disease impairs STC mitochondrial structure and function in swine, which can be attenuated with mitoprotection. CD24+/CD133+ STCs were quantified in pig kidneys after 16 wk of metabolic syndrome (MetS) or lean diet (Lean) with or without concurrent renal artery stenosis (RAS) (n = 6 each). Pig STCs were isolated and characterized, and mitochondrial structure, membrane potential, and oxidative stress were assessed in cells untreated or incubated with the mitoprotective drug elamipretide (1 nM for 6 h). STC-protective effects were assessed in vitro by their capacity to proliferate and improve viability of injured pig tubular epithelial cells. The percentage of STCs was higher in MetS, Lean + RAS, and MetS + RAS kidneys compared with Lean kidneys. STCs isolated from Lean + RAS and MetS + RAS pigs showed mitochondrial swelling and decreased matrix density, which were both restored by mitoprotection. In addition, mitochondrial membrane potential and ATP production were reduced and production of reactive oxygen species elevated in MetS, Lean + RAS, and MetS + RAS STCs. Importantly, mitoprotection improved mitochondrial structure and function as well as the capacity of MetS + RAS STCs to repair injured tubular cells in vitro. Renovascular disease in swine is associated with a higher prevalence of STCs but induces structural and functional alterations in STC mitochondria, which impair their reparative potency. These observations suggest a key role for mitochondria in the renal reparative capacity of STCs.


Subject(s)
Kidney Tubules/cytology , Mitochondria/pathology , Renal Artery Obstruction/etiology , Animal Feed , Animals , Cholesterol, Dietary , Dietary Carbohydrates , Female , Renal Artery Obstruction/pathology , Renal Circulation , Swine
8.
J Am Heart Assoc ; 8(11): e012584, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31433703

ABSTRACT

Background Hypertension may be associated with renal cellular injury. Cells in distress release extracellular vesicles (EVs), and their numbers in urine may reflect renal injury. Cellular senescence, an irreversible growth arrest in response to a noxious milieu, is characterized by release of proinflammatory cytokines. We hypothesized that EVs released by senescent nephron cells can be identified in urine of patients with hypertension. Methods and Results We recruited patients with essential hypertension (EH) or renovascular hypertension and healthy volunteers (n=14 each). Renal oxygenation was assessed using magnetic resonance imaging and blood samples collected from both renal veins for cytokine-level measurements. EVs isolated from urine samples were characterized by imaging flow cytometry based on specific markers, including p16 (senescence marker), calyxin (podocytes), urate transporter 1 (proximal tubules), uromodulin (ascending limb of Henle's loop), and prominin-2 (distal tubules). Overall percentage of urinary p16+ EVs was elevated in EH and renovascular hypertension patients compared with healthy volunteers and correlated inversely with renal function and directly with renal vein cytokine levels. Urinary levels of p16+/urate transporter 1+ were elevated in all hypertensive subjects compared with healthy volunteers, whereas p16+/prominin-2+ levels were elevated only in EH versus healthy volunteers and p16+/uromodulin+ in renovascular hypertension versus EH. Conclusions Levels of p16+ EVs are elevated in urine of hypertensive patients and may reflect increased proximal tubular cellular senescence. In EH, EVs originate also from distal tubules and in renovascular hypertension from Henle's loop. Hence, urinary EVs levels may be useful to identify intrarenal sites of cellular senescence.


Subject(s)
Cellular Senescence , Essential Hypertension/pathology , Extracellular Vesicles/pathology , Hypertension, Renovascular/pathology , Nephrons/pathology , Aged , Biomarkers/blood , Biomarkers/urine , Case-Control Studies , Cyclin-Dependent Kinase Inhibitor p16/urine , Cytokines/blood , Essential Hypertension/blood , Essential Hypertension/urine , Extracellular Vesicles/metabolism , Female , Humans , Hypertension, Renovascular/blood , Hypertension, Renovascular/urine , Male , Membrane Glycoproteins/urine , Middle Aged , Nephrons/metabolism , Organic Anion Transporters/urine , Organic Cation Transport Proteins/urine , Prospective Studies , Urine/cytology
9.
Invest Radiol ; 54(11): 681-688, 2019 11.
Article in English | MEDLINE | ID: mdl-31261296

ABSTRACT

OBJECTIVES: Multiparametric renal magnetic resonance imaging (MRI), including diffusion-weighted imaging, magnetic resonance elastography, and magnetization transfer imaging (MTI), is valuable in the noninvasive assessment of renal fibrosis. However, hemodynamic changes in diseased kidneys may impede their ability to measure renal fibrosis. Because MTI assesses directly tissue content of macromolecules, we test the hypothesis that MTI would be insensitive to renal hemodynamic changes in swine kidneys with acute graded ischemia. MATERIALS AND METHODS: Seven domestic pigs underwent placement of an inflatable silicone cuff around the right renal artery to induce graded renal ischemia. Multiparametric MRI was performed at baseline, 50%, 75%, and 100% renal artery stenosis as well as reperfusion. Measurements included regional perfusion, R2*, apparent diffusion coefficient (ADC), stiffness, and magnetization transfer ratio (MTR) using arterial spin-labeled MRI, blood oxygenation-dependent MRI, diffusion-weighted imaging, magnetic resonance elastography, and MTI, respectively. Histology was performed to rule out renal fibrosis. RESULTS: During graded ischemia, decreases in renal perfusion were accompanied with elevated R2*, decreased ADC, and stiffness, whereas no statistically significant changes were observed in the MTR. No fibrosis was detected by histology. After release of the obstruction, renal perfusion showed only partial recovery, associated with return of kidney R2*, ADC, and stiffness to baseline levels, whereas cortical MTR decreased slightly. CONCLUSIONS: Renal MTI is insensitive to decreases in renal perfusion and may offer reliable assessment of renal structural changes.


Subject(s)
Kidney/diagnostic imaging , Kidney/pathology , Magnetic Resonance Imaging/methods , Animals , Disease Models, Animal , Female , Fibrosis , Hemodynamics , Humans , Swine
10.
Cell Transplant ; 28(9-10): 1271-1278, 2019.
Article in English | MEDLINE | ID: mdl-31250656

ABSTRACT

Mesenchymal stromal/stem cells (MSCs) belong to the endogenous cellular reparative system, and can be used exogenously in cell-based therapy. MSCs release extracellular vesicles (EVs), including exosomes and microvesicles, which mediate some of their therapeutic activity through intercellular communication. We have previously demonstrated that metabolic syndrome (MetS) modifies the cargo packed within swine EV, but whether it influences their phenotypical characteristics remains unclear. This study tested the hypothesis that MetS shifts the size distribution of MSC-derived EVs. Adipose tissue-derived MSC-EV subpopulations from Lean (n = 6) and MetS (n = 6) pigs were characterized for number and size using nanoparticle-tracking analysis, flow cytometry, and transmission electron microscopy. Expression of exosomal genes was determined using next-generation RNA-sequencing (RNA-seq). The number of EV released from Lean and MetS pig MSCs was similar, yet MetS-MSCs yielded a higher proportion of small-size EVs (202.4 ± 17.7 nm vs. 280.3 ± 15.1 nm), consistent with exosomes. RNA-seq showed that their EVs were enriched with exosomal markers. Lysosomal activity remained unaltered in MetS-MSCs. Therefore, MetS alters the size distribution of MSC-derived EVs in favor of exosome release. These observations may reflect MSC injury and membrane recycling in MetS or increased expulsion of waste products, and may have important implications for development of adequate cell-based treatments.


Subject(s)
Extracellular Vesicles/metabolism , Gene Expression Regulation , Mesenchymal Stem Cells/metabolism , Metabolic Syndrome/metabolism , RNA-Seq , Animals , Extracellular Vesicles/pathology , Mesenchymal Stem Cells/pathology , Metabolic Syndrome/pathology , Particle Size , Swine
11.
Am J Physiol Renal Physiol ; 317(7): F12-F22, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31042059

ABSTRACT

Metabolic syndrome (MetS) is associated with nutrient surplus and kidney hyperfiltration, accelerating chronic renal failure. The potential involvement of podocyte damage in early MetS remains unclear. Mitochondrial dysfunction is an important determinant of renal damage, but whether it contributes to MetS-related podocyte injury remains unknown. Domestic pigs were studied after 16 wk of diet-induced MetS, MetS treated with the mitochondria-targeted peptide elamipretide (ELAM; 0.1 mg·kg-1·day-1 sc) for the last month of diet, and lean controls (n = 6 pigs/group). Glomerular filtration rate (GFR) and renal blood flow (RBF) were measured using multidetector computed tomography, and podocyte and mitochondrial injury were measured by light and electron microscopy. Urinary levels of podocyte-derived extracellular vesicles (pEVs; nephrin positive/podocalyxin positive) were characterized by flow cytometry. Body weight, blood pressure, RBF, and GFR were elevated in MetS. Glomerular size and glomerular injury score were also elevated in MetS and decreased after ELAM treatment. Evidence of podocyte injury, impaired podocyte mitochondria, and foot process width were all increased in MetS but restored with ELAM. The urinary concentration of pEVs was elevated in MetS pigs and directly correlated with renal dysfunction, glomerular injury, and fibrosis and inversely correlated with glomerular nephrin expression. Additionally, pEV numbers were elevated in the urine of obese compared with lean human patients. Early MetS induces podocyte injury and mitochondrial damage, which can be blunted by mitoprotection. Urinary pEVs reflecting podocyte injury might represent early markers of MetS-related kidney disease and a novel therapeutic target.


Subject(s)
Extracellular Vesicles/ultrastructure , Metabolic Syndrome/pathology , Mitochondria/physiology , Podocytes/ultrastructure , Animals , Diet , Diet, High-Fat , Female , Fructose/administration & dosage , Glomerular Filtration Rate , Humans , Kidney/blood supply , Kidney/pathology , Kidney/physiopathology , Kidney Glomerulus/drug effects , Kidney Glomerulus/pathology , Metabolic Syndrome/drug therapy , Metabolic Syndrome/etiology , Mitochondria/ultrastructure , Obesity/urine , Oligopeptides/therapeutic use , Podocytes/drug effects , Renal Circulation , Sus scrofa , Urine
12.
Stem Cell Res ; 37: 101423, 2019 05.
Article in English | MEDLINE | ID: mdl-30933719

ABSTRACT

INTRODUCTION: Mesenchymal stem cells (MSCs) possess endogenous reparative properties and may serve as an exogenous therapeutic intervention in patients with chronic kidney disease. Cardiovascular risk factors clustering in the metabolic syndrome (MetS) might adversely affect cellular properties. To test the hypothesis that Mets interferes with MSC characteristics, we performed comprehensive comparison of the mRNA, microRNA, and protein content of MSCs isolated from Lean and MetS pigs. METHODS: Domestic pigs were fed a 16-week Lean or MetS diet (n = 4 each). Expression profiles of co-existing microRNAs, mRNAs, and proteins were obtained by high-throughput sequencing and liquid chromatography-mass spectrometry. TargetScan and ComiR were used to predict target genes of differentially expressed microRNAs, and DAVID 6.7 for functional annotation analysis to rank primary gene ontology categories for the microRNA target genes, mRNAs, and proteins. RESULTS: Differential expression analysis revealed 12 microRNAs upregulated in MetS-MSCs compared to Lean-MSCs (fold change>1.4, p < .05), which target 7728 genes, whereas 33 mRNAs and 78 proteins were downregulated (fold change<0.7, p < .05). Integrated analysis showed that targets of those microRNAs upregulated in MetS-MSCs overlap with at least half of mRNAs and proteins dysregulated in those cells. Functional analysis of overlapping mRNAs and proteins suggest that they are primarily involved in mitochondria, inflammation and transcription. MetS-MSCs also exhibited increased nuclear translocation of nuclear factor kappa-B, associated with increased SA-ß-Galactosidase and decreased cytochrome-c oxidase-IV activity. CONCLUSION: MetS alters the transcriptome and proteome of swine adipose tissue-derived MSCs particularly genes involved in mitochondria, inflammation and transcription regulation. These alterations might limit the reparative function of endogenous MSC and their use as an exogenous regenerative therapy.


Subject(s)
Adipose Tissue/metabolism , Mesenchymal Stem Cells/metabolism , Metabolic Syndrome/metabolism , MicroRNAs/genetics , Proteome/metabolism , RNA, Messenger/genetics , Transcriptome , Adipose Tissue/pathology , Animals , Biomarkers/analysis , Female , Gene Expression Regulation , Mesenchymal Stem Cells/pathology , Metabolic Syndrome/genetics , Metabolic Syndrome/pathology , Swine
13.
Kidney Int ; 95(4): 948-957, 2019 04.
Article in English | MEDLINE | ID: mdl-30904069

ABSTRACT

The relationships between renal blood flow (RBF), tissue oxygenation, and inflammatory injury in atherosclerotic renovascular disease (ARVD) are poorly understood. We sought to correlate RBF and tissue hypoxia with glomerular filtration rate (GFR) in 48 kidneys from patients with ARVD stratified by single kidney iothalamate GFR (sGFR). Oxygenation was assessed by blood oxygenation level dependent magnetic resonance imaging (BOLD MRI), which provides an index for the levels of deoxyhemoglobin within a defined volume of tissue (R2*). sGFR correlated with RBF and with the severity of vascular stenosis as estimated by duplex velocities. Higher cortical R2* and fractional hypoxia and higher levels of renal vein neutrophil-gelatinase-associated-lipocalin (NGAL) and monocyte-chemoattractant protein-1 (MCP-1) were observed at lower GFR, with an abrupt inflection below 20 ml/min. Renal vein MCP-1 levels correlated with cortical R2* and with fractional hypoxia. Correlations between cortical R2* and RBF in the highest sGFR stratum (mean sGFR 51 ± 12 ml/min; R = -0.8) were degraded in the lowest sGFR stratum (mean sGFR 8 ± 3 ml/min; R = -0.1). Changes in fractional hypoxia after furosemide were also absent in the lowest sGFR stratum. These data demonstrate relative stability of renal oxygenation with moderate reductions in RBF and GFR but identify a transition to overt hypoxia and inflammatory cytokine release with severely reduced GFR. Tissue oxygenation and RBF were less correlated in the setting of reduced sGFR, consistent with variable oxygen consumption or a shift to alternative mechanisms of tissue injury. Identifying transitions in tissue oxygenation may facilitate targeted therapy in ARVD.


Subject(s)
Atherosclerosis/complications , Glomerular Filtration Rate , Inflammation/physiopathology , Kidney/pathology , Renal Artery Obstruction/physiopathology , Aged , Aged, 80 and over , Atherosclerosis/physiopathology , Cell Hypoxia , Cross-Sectional Studies , Female , Humans , Inflammation/etiology , Inflammation/pathology , Kidney/diagnostic imaging , Kidney/physiopathology , Magnetic Resonance Imaging , Male , Middle Aged , Oxygen/analysis , Oxygen/blood , Oxygen Consumption , Renal Artery Obstruction/etiology , Renal Artery Obstruction/pathology , Renal Circulation
14.
Stem Cells Transl Med ; 8(5): 430-440, 2019 05.
Article in English | MEDLINE | ID: mdl-30707002

ABSTRACT

Mesenchymal stem/stromal cells (MSCs) release extracellular vesicles (EVs), which shuttle proteins to recipient cells, promoting cellular repair. We hypothesized that cardiovascular risk factors may alter the pattern of proteins packed within MSC-derived EVs. To test this, we compared the protein cargo of EVs to their parent MSCs in pigs with metabolic syndrome (MetS) and Lean controls. Porcine MSCs were harvested from abdominal fat after 16 weeks of Lean- or MetS-diet (n = 5 each), and their EVs isolated. Following liquid chromatography mass spectrometry proteomic analysis, proteins were classified based on cellular component, molecular function, and protein class. Five candidate proteins were validated by Western blot. Clustering analysis was performed to identify primary functional categories of proteins enriched in or excluded from EVs. Proteomics analysis identified 6,690 and 6,790 distinct proteins in Lean- and MetS-EVs, respectively. Differential expression analysis revealed that 146 proteins were upregulated and 273 downregulated in Lean-EVs versus Lean-MSCs, whereas 787 proteins were upregulated and 185 downregulated in MetS-EVs versus MetS-MSCs. Proteins enriched in both Lean- and MetS-EVs participate in vesicle-mediated transport and cell-to-cell communication. Proteins enriched exclusively in Lean-EVs modulate pathways related to the MSC reparative capacity, including cell proliferation, differentiation, and activation, as well as transforming growth factor-ß signaling. Contrarily, proteins enriched only in MetS-EVs are linked to proinflammatory pathways, including acute inflammatory response, leukocyte transendothelial migration, and cytokine production. Coculture with MetS-EVs increased renal tubular cell inflammation. MetS alters the protein cargo of porcine MSC-derived EVs, selectively packaging specific proinflammatory signatures that may impair their ability to repair damaged tissues. Stem Cells Translational Medicine 2019;8:430-440.


Subject(s)
Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/metabolism , Metabolic Syndrome/physiopathology , Proteins/metabolism , Proteomics/methods , Animals , Cells, Cultured , Female , Humans , Swine
15.
Bio Protoc ; 9(21): e3420, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-33654918

ABSTRACT

The ability to non-invasively detect specific damage to the kidney has been limited. Identification of extracellular vesicles released by cells, especially when under duress, might allow for monitoring and identification of specific cell types within the kidney that are stressed. We have adapted a previously published traditional flow cytometry method for use with an imaging flow cytometer (Amnis FlowSight) for identifying EV released by specific cell types and excreted into the urine or blood using markers characteristic of particular cells in the kidney. Here we present a protocol utilizing the Amnis FlowSight Imaging Flow Cytometer to identify and quantify EV from the urine of patients with essential hypertension and renovascular disease. Notably, EV isolated from cell culture media and plasma can also be analyzed similarly.

16.
BMJ Open Diabetes Res Care ; 7(1): e000720, 2019.
Article in English | MEDLINE | ID: mdl-31908790

ABSTRACT

Objective: Activin A, an inflammatory mediator implicated in cellular senescence-induced adipose tissue dysfunction and profibrotic kidney injury, may become a new target for the treatment of diabetic kidney disease (DKD) and chronic kidney diseases. We tested the hypothesis that human DKD-related injury leads to upregulation of activin A in blood and urine and in a human kidney cell model. We further hypothesized that circulating activin A parallels kidney injury markers in DKD. Research design and methods: In two adult diabetes cohorts and controls (Minnesota, USA; Galway, Ireland), the relationships between plasma (or urine) activin A, estimated glomerular filtration rate (eGFR) and DKD injury biomarkers were tested with logistic regression and correlation coefficients. Activin A, inflammatory, epithelial-mesenchymal-transition (EMT) and senescence markers were assayed in human kidney (HK-2) cells incubated in high glucose plus transforming growth factor-ß1 or albumin. Results: Plasma activin A levels were elevated in diabetes (n=206) compared with controls (n=76; 418.1 vs 259.3 pg/mL; p<0.001) and correlated inversely with eGFR (rs=-0.61; p<0.001; diabetes). After eGFR adjustment, only albuminuria (OR 1.56, 95% CI 1.16 to 2.09) and tumor necrosis factor receptor-1 (OR 6.40, 95% CI 1.08 to 38.00) associated with the highest activin tertile. Albuminuria also related to urinary activin (rs=0.65; p<0.001). Following in vitro HK-2 injury, activin, inflammatory, EMT genes and supernatant activin levels were increased. Conclusions: Circulating activin A is increased in human DKD and correlates with reduced kidney function and kidney injury markers. DKD-injured human renal tubule cells develop a profibrotic and inflammatory phenotype with activin A upregulation. These findings underscore the role of inflammation and provide a basis for further exploration of activin A as a diagnostic marker and therapeutic target in DKD.


Subject(s)
Activins/blood , Biomarkers/blood , Cellular Senescence , Diabetic Nephropathies/blood , Kidney/physiopathology , Adult , Aged , Case-Control Studies , Cells, Cultured , Cohort Studies , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/therapy , Diabetic Nephropathies/physiopathology , Diabetic Nephropathies/therapy , Female , Glomerular Filtration Rate , Humans , Ireland/epidemiology , Male , Middle Aged , Minnesota/epidemiology
17.
Hypertension ; 72(5): 1180-1188, 2018 11.
Article in English | MEDLINE | ID: mdl-30354805

ABSTRACT

Hypertension, an important cause of chronic kidney disease, is characterized by peritubular capillary (PTC) loss. Circulating levels of endothelial microparticles (EMPs) reflect systemic endothelial injury. We hypothesized that systemic and urinary PTC-EMPs levels would reflect renal microvascular injury in hypertensive patients. We prospectively measured by flow cytometry renal vein, inferior vena cava, and urinary levels of EMPs in essential (n=14) and renovascular (RVH; n=24) hypertensive patients and compared them with peripheral blood and urinary levels in healthy volunteers (n=14). PTC-EMPs were identified as urinary exosomes positive for the PTC marker plasmalemmal-vesicle-associated protein. In 7 RVH patients, PTC and fibrosis were also quantified in renal biopsy, and in 18 RVH patients, PTC-EMPs were measured again 3 months after continued medical therapy with or without stenting (n=9 each). Renal vein and systemic PTC-EMPs levels were not different among the groups, whereas their urinary levels were elevated in both RVH and essential hypertension versus healthy volunteers (56.8%±12.7% and 62.8%±10.7% versus 34.0%±17.8%; both P≤0.001). Urinary PTC-EMPs levels correlated directly with blood pressure and inversely with estimated glomerular filtration rate. Furthermore, in RVH, urinary PTC-EMPs levels correlated directly with stenotic kidney hypoxia, histological PTC count, and fibrosis and inversely with cortical perfusion. Three months after treatment, the change in urinary PTC-EMPs levels correlated inversely with a change in renal function ( r=-0.582; P=0.011). Therefore, urinary PTC-EMPs levels are increased in hypertensive patients and may reflect renal microcirculation injury, whereas systemic PTC-EMPs levels are unchanged. Urinary PTC-EMPs may be useful as novel biomarkers of intrarenal capillary loss.


Subject(s)
Capillaries/pathology , Cell-Derived Microparticles , Hypertension/pathology , Kidney/pathology , Aged , Female , Glomerular Filtration Rate , Humans , Hypertension/urine , Kidney/blood supply , Male , Middle Aged
18.
Sci Rep ; 8(1): 13948, 2018 09 17.
Article in English | MEDLINE | ID: mdl-30224726

ABSTRACT

Renal artery stenosis (RAS) caused by narrowing of arteries is characterized by microvascular damage. Macrophages are implicated in repair and injury, but the specific populations responsible for these divergent roles have not been identified. Here, we characterized murine kidney F4/80+CD64+ macrophages in three transcriptionally unique populations. Using fate-mapping and parabiosis studies, we demonstrate that CD11b/cint are long-lived kidney-resident (KRM) while CD11chiMϕ, CD11cloMϕ are monocyte-derived macrophages. In a murine model of RAS, KRM self-renewed, while CD11chiMϕ and CD11cloMϕ increased significantly, which was associated with loss of peritubular capillaries. Replacing the native KRM with monocyte-derived KRM using liposomal clodronate and bone marrow transplantation followed by RAS, amplified loss of peritubular capillaries. To further elucidate the nature of interactions between KRM and peritubular endothelial cells, we performed RNA-sequencing on flow-sorted macrophages from Sham and RAS kidneys. KRM showed a prominent activation pattern in RAS with significant enrichment in reparative pathways, like angiogenesis and wound healing. In culture, KRM increased proliferation of renal peritubular endothelial cells implying direct pro-angiogenic properties. Human homologs of KRM identified as CD11bintCD11cintCD68+ increased in post-stenotic kidney biopsies from RAS patients compared to healthy human kidneys, and inversely correlated to kidney function. Thus, KRM may play protective roles in stenotic kidney injury through expansion and upregulation of pro-angiogenic pathways.


Subject(s)
Kidney/pathology , Monocytes/pathology , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , CD11c Antigen/metabolism , Clodronic Acid/metabolism , Inflammation/metabolism , Inflammation/pathology , Kidney/metabolism , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Inbred C57BL , Monocytes/metabolism , Phospholipids/metabolism
19.
J Am Heart Assoc ; 7(6)2018 03 23.
Article in English | MEDLINE | ID: mdl-29572319

ABSTRACT

BACKGROUND: Ossabaw pigs are unique miniature swine with genetic predisposition to develop metabolic syndrome and coronary atherosclerosis after extended periods receiving atherogenic diets. We have hypothesized that transgenic Ossabaw swine expressing chimp PCSK9 (proprotein convertase subtilisin-like/kexin type 9) containing the D374Y gain of function would develop familial hypercholesterolemia and coronary artery plaques more rapidly than Landrace swine with the same transgene. METHODS AND RESULTS: Ossabaw and Landrace PCSK9 gain-of-function founders were generated by Sleeping Beauty transposition and cloning. Histopathologic findings in the Ossabaw founder animal showed more advanced plaques and higher stenosis than in the Landrace founder, underscoring the Ossabaw genetic predisposition to atherosclerosis. We chose to further characterize the Ossabaw PCSK9 gain-of-function animals receiving standard or atherogenic diets in a 6-month longitudinal study using computed tomography, magnetic resonance (MR) imaging, intravascular ultrasound, and optical coherence tomography, followed by pathological analysis of atherosclerosis focused on the coronary arteries. The Ossabaw model was consistently hypercholesterolemic, with or without dietary challenge, and by 6 months had consistent and diffuse fibrofatty or fibroatheromatous plaques with necrosis, overlying fibrous caps, and calcification in up to 10% of coronary plaques. CONCLUSIONS: The Ossabaw PCSK9 gain-of-function model provides consistent and robust disease development in a time frame that is practical for use in preclinical therapeutic evaluation to drive innovation. Although no animal model perfectly mimics the human condition, this genetic large-animal model is a novel tool for testing therapeutic interventions in the context of developing and advanced coronary artery disease.


Subject(s)
Coronary Artery Disease/genetics , Coronary Stenosis/genetics , Gain of Function Mutation , Plaque, Atherosclerotic , Proprotein Convertase 9/genetics , Swine, Miniature/genetics , Swine/genetics , Animals , Animals, Genetically Modified , Cells, Cultured , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/enzymology , Coronary Artery Disease/pathology , Coronary Stenosis/diagnostic imaging , Coronary Stenosis/enzymology , Coronary Stenosis/pathology , Coronary Vessels/diagnostic imaging , Coronary Vessels/metabolism , Coronary Vessels/pathology , Diet, High-Fat , Disease Models, Animal , Disease Progression , Fibrosis , Genetic Predisposition to Disease , Hyperlipoproteinemia Type II/enzymology , Hyperlipoproteinemia Type II/genetics , Necrosis , Pan troglodytes/genetics , Phenotype , Proprotein Convertase 9/metabolism , Severity of Illness Index , Time Factors , Vascular Calcification/diagnostic imaging , Vascular Calcification/enzymology , Vascular Calcification/genetics , Vascular Calcification/pathology
20.
Cardiovasc Res ; 114(3): 431-442, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29267873

ABSTRACT

AIMS: The mechanisms responsible for cardiac damage in the early stages of metabolic syndrome (MetS) remain unknown. Mitochondria are intimately associated with cellular myofibrils, with the cytoskeleton functioning as a linkage coordinator, and closely associated to the calcium release sites of the sarcoplasmic reticulum (SR). We hypothesized that early MetS is characterized by mitochondria-related myocardial damage, associated with altered cytoskeletal-mitochondria-SR interaction. METHODS AND RESULTS: Domestic pigs were studied after 16 weeks of diet-induced MetS, MetS treated for the last 4 weeks with the mitochondrial-targeted peptide elamipretide (ELAM; 0.1 mg/kg SC q.d), or Lean controls (n = 6/group). Cardiac remodeling and function were assessed by fast comuted tomography. Myocardial mitochondrial structure, SR-mitochondria interaction, calcium handling, cytoskeletal proteins, oxidative stress, and apoptosis were studied ex-vivo. MetS pigs developed hyperlipidemia, hypertension, and insulin resistance, yet cardiac function was preserved. MetS-induced mitochondrial disorganization, decreased (C18:2)4 cardiolipin, disrupted ATP/ADP balance, and decreased cytochrome-c oxidase (COX)-IV activity. MetS also increased mitochondrial hydrogen peroxide (H2O2) production, decreased nicotinamide adenine dinucleotide phosphate (NADPH)/NADP and GSH/GSSG, and decreased myocardial desmin and ß2 tubulin immunoreactivity, and impaired SR-mitochondrial interaction and mitochondrial calcium handling, eliciting myocardial oxidative stress and apoptosis. ELAM improved mitochondrial organization and cardiolipin species profile, restored ATP/ADP ratio and COX-IV activity, decreased H202 production, and improved generation of NADPH and GSH. ELAM also improved cytoskeletal-mitochondria-SR interaction and mitochondrial calcium handling, attenuating oxidative stress, and apoptosis. CONCLUSIONS: Disorganization of cardiomyocyte cytoskeletal-mitochondria-SR network is associated with cardiac reversible changes in early MetS, preceding overt cardiac dysfunction. These findings may introduce novel therapeutic targets for blunting cardiac damage in early MetS.


Subject(s)
Cardiomyopathies/prevention & control , Metabolic Syndrome/drug therapy , Mitochondria, Heart/drug effects , Myocytes, Cardiac/drug effects , Oligopeptides/pharmacology , Animals , Apoptosis/drug effects , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Cytoskeleton/pathology , Disease Models, Animal , Energy Metabolism/drug effects , Female , Metabolic Syndrome/metabolism , Metabolic Syndrome/pathology , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oxidative Stress/drug effects , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum/pathology , Signal Transduction/drug effects , Sus scrofa
SELECTION OF CITATIONS
SEARCH DETAIL
...