Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 4: e1558, 2016.
Article in English | MEDLINE | ID: mdl-26844016

ABSTRACT

Current research and development approaches to drug discovery have become less fruitful and more costly. One alternative paradigm is that of drug repositioning. Many marketed examples of repositioned drugs have been identified through serendipitous or rational observations, highlighting the need for more systematic methodologies to tackle the problem. Systems level approaches have the potential to enable the development of novel methods to understand the action of therapeutic compounds, but requires an integrative approach to biological data. Integrated networks can facilitate systems level analyses by combining multiple sources of evidence to provide a rich description of drugs, their targets and their interactions. Classically, such networks can be mined manually where a skilled person is able to identify portions of the graph (semantic subgraphs) that are indicative of relationships between drugs and highlight possible repositioning opportunities. However, this approach is not scalable. Automated approaches are required to systematically mine integrated networks for these subgraphs and bring them to the attention of the user. We introduce a formal framework for the definition of integrated networks and their associated semantic subgraphs for drug interaction analysis and describe DReSMin, an algorithm for mining semantically-rich networks for occurrences of a given semantic subgraph. This algorithm allows instances of complex semantic subgraphs that contain data about putative drug repositioning opportunities to be identified in a computationally tractable fashion, scaling close to linearly with network data. We demonstrate the utility of our approach by mining an integrated drug interaction network built from 11 sources. This work identified and ranked 9,643,061 putative drug-target interactions, showing a strong correlation between highly scored associations and those supported by literature. We discuss the 20 top ranked associations in more detail, of which 14 are novel and 6 are supported by the literature. We also show that our approach better prioritizes known drug-target interactions, than other state-of-the art approaches for predicting such interactions.

2.
Toxicol Appl Pharmacol ; 270(2): 149-57, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23602889

ABSTRACT

Improving drug attrition remains a challenge in pharmaceutical discovery and development. A major cause of early attrition is the demonstration of safety signals which can negate any therapeutic index previously established. Safety attrition needs to be put in context of clinical translation (i.e. human relevance) and is negatively impacted by differences between animal models and human. In order to minimize such an impact, an earlier assessment of pharmacological target homology across animal model species will enhance understanding of the context of animal safety signals and aid species selection during later regulatory toxicology studies. Here we sequenced the genomes of the Sus scrofa Göttingen minipig and the Canis familiaris beagle, two widely used animal species in regulatory safety studies. Comparative analyses of these new genomes with other key model organisms, namely mouse, rat, cynomolgus macaque, rhesus macaque, two related breeds (S. scrofa Duroc and C. familiaris boxer) and human reveal considerable variation in gene content. Key genes in toxicology and metabolism studies, such as the UGT2 family, CYP2D6, and SLCO1A2, displayed unique duplication patterns. Comparisons of 317 known human drug targets revealed surprising variation such as species-specific positive selection, duplication and higher occurrences of pseudogenized targets in beagle (41 genes) relative to minipig (19 genes). These data will facilitate the more effective use of animals in biomedical research.


Subject(s)
Dogs/genetics , Drug Discovery/methods , Genome , Models, Animal , Swine, Miniature/genetics , Animals , Base Sequence , Female , Molecular Sequence Data , Sequence Alignment , Sequence Analysis, DNA , Swine
3.
Diabetes ; 61(5): 1297-301, 2012 May.
Article in English | MEDLINE | ID: mdl-22403302

ABSTRACT

Increased adiponectin levels have been shown to be associated with a lower risk of type 2 diabetes. To understand the relations between genetic variation at the adiponectin-encoding gene, ADIPOQ, and adiponectin levels, and subsequently its role in disease, we conducted a deep resequencing experiment of ADIPOQ in 14,002 subjects, including 12,514 Europeans, 594 African Americans, and 567 Indian Asians. We identified 296 single nucleotide polymorphisms (SNPs), including 30 amino acid changes, and carried out association analyses in a subset of 3,665 subjects from two independent studies. We confirmed multiple genome-wide association study findings and identified a novel association between a low-frequency SNP (rs17366653) and adiponectin levels (P = 2.2E-17). We show that seven SNPs exert independent effects on adiponectin levels. Together, they explained 6% of adiponectin variation in our samples. We subsequently assessed association between these SNPs and type 2 diabetes in the Genetics of Diabetes Audit and Research in Tayside Scotland (GO-DARTS) study, comprised of 5,145 case and 6,374 control subjects. No evidence of association with type 2 diabetes was found, but we were also unable to exclude the possibility of substantial effects (e.g., odds ratio 95% CI for rs7366653 [0.91-1.58]). Further investigation by large-scale and well-powered Mendelian randomization studies is warranted.


Subject(s)
Adiponectin/genetics , Adiponectin/metabolism , Diabetes Mellitus, Type 2/genetics , Adiponectin/blood , Base Sequence , Computational Biology , Genetic Predisposition to Disease , Humans , Polymorphism, Single Nucleotide , Racial Groups
4.
Drug Discov Today ; 16(11-12): 512-9, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21440664

ABSTRACT

Next-generation sequencing (NGS) technologies represent a paradigm shift in sequencing capability. The technology has already been extensively applied to biological research, resulting in significant and remarkable insights into the molecular biology of cells. In this review, we focus on current and potential applications of the technology as applied to the drug discovery and development process. Early applications have focused on the oncology and infectious disease therapeutic areas, with emerging use in biopharmaceutical development and vaccine production in evidence. Although this technology has great potential, significant challenges remain, particularly around the storage, transfer and analysis of the substantial data sets generated.


Subject(s)
Biopharmaceutics/methods , Drug Discovery/methods , High-Throughput Screening Assays/methods , Pharmacogenetics/methods , Sequence Analysis, DNA/methods , Animals , Humans , Polymorphism, Genetic , Precision Medicine/methods , Sequence Analysis, RNA/methods , Software
5.
Methods Mol Biol ; 628: 39-52, 2010.
Article in English | MEDLINE | ID: mdl-20238075

ABSTRACT

Increasingly, vast amounts of genomics and genetic data are available. Although much of the data is largely accessible to relatively simple web queries, in some cases, more complex queries are required. This paper reviews the hierarchy of tools for querying genetic and genomic data. For querying multiple genes, variants or regions ENSEMBL BioMart and the UCSC Table Browser offer flexible interfaces. For more complex queries, GALAXY is a sophisticated tool for building workflows over existing internet resources. For the most challenging genome scale queries, programmatic access may be required through a defined application programming interface (API) - such as the one provided by Ensembl. All these tools allow one to rapidly ask many questions that were difficult to answer a few years ago, but choosing the appropriate tool for the job is critical.


Subject(s)
Databases, Genetic , Genome , Animals , Genomics , Humans , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...