Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Nutr ; 72(3): 467-77, 1994 Sep.
Article in English | MEDLINE | ID: mdl-7947660

ABSTRACT

Three experiments were conducted to determine the fate of condensed tannins (CT) during digestion in sheep. CT were measured as extractable, protein-bound and fibre-bound fractions using the butanol-HCl procedure. In Expt 1, purified CT were added to digesta from different parts of the digestive tract obtained from a pasture-fed sheep. Recoveries of CT after 0 and 4 h of anaerobic incubation at 39 degrees averaged: rumen 78.9 and 57.5%; abomasum 50.9 and 49.0%; duodenum 64.4 and 46.0% and ileum 43.4 and 38.8%. In Expt 2, [14C]CT was given per abomasum over a 6.5 h period at 15 min intervals to a sheep previously fed on Lotus pedunculatus (which contains CT). The sheep was killed at the end of the period and 92.4% of the label was recovered. Virtually all of the label was in the digesta, and none was detected in the blood, so that the CT-carbon appeared not to be absorbed from the small intestine. In Expt 3, rumen, abomasal and ileal digesta and faeces samples from sheep fed on Lotus pedunculatus were analysed for CT and CT flow along the digestive tract calculated from reference to indigestible markers. Values were low in all digesta samples, indicating disappearance of CT across the rumen and small intestine, and CT recovery in faeces was only about 15% of intake. However, the 14C results from Expt 2 suggested that little if any CT-carbon was absorbed and the low recoveries in Expt 1 are considered to be a consequence of either conformational changes to the CT molecule such that it is no longer detectable by colorimetric methods, an inability of the analytical method to release bound CT for the butanol-HCl assay, or interference from other digesta constituents. It is concluded that the butanol-HCl method of CT analysis is appropriate for quantifying CT in herbages but not in digesta or faeces, and that a substantial part of CT released during protein digestion in the small intestine may not be detectable by normal CT analytical methods.


Subject(s)
Gastrointestinal Contents/chemistry , Sheep/metabolism , Tannins/metabolism , Animals , Carbon Radioisotopes , Digestion , Intestinal Absorption , Intestine, Small/metabolism , Poaceae , Tannins/analysis
2.
Planta ; 105(1): 33-42, 1972 Mar.
Article in English | MEDLINE | ID: mdl-24477700

ABSTRACT

The lateral bud of Solanum andigena has the potentiality to develop as a stolon or as a leafy, orthotropic shoot. Natural stolons are normally only produced from underground nodes, but aerial stolons can be induced to form by the application of a combination of indole-3-acetic acid and gibberellic acid (IAA/GA3) paste to the cut surface; under some conditions both natural or induced stolons are converted to upright, leafy shoots. The presence of roots was found to be necessary for the conversion of a natural stolon to a leafy shoot, but this root effect could be replaced by the synthetic cytokinin, 6-benzylaminopurine (BAP). By using α-(14)C-BAP it was demonstrated that cytokinin accumulates in the tip of an induced stolon, prior to its conversion to a leafy shoot caused by withdrawal of the IAA/GA3 paste. The application of IAA/GA3 to decapitated plants was shown to influence both the distribution and metabolism of the cytokinin. The possibility that the role of auxin in apical dominance, at least in part, is to control the distribution and metabolism of cytokinins is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...