Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(5)2020 Feb 29.
Article in English | MEDLINE | ID: mdl-32121450

ABSTRACT

We present a model-based approach to estimate the vertical profile of horizontal wind velocity components using motion perturbations of a multirotor unmanned aircraft system (UAS) in both hovering and steady ascending flight. The state estimation framework employed for wind estimation was adapted to a set of closed-loop rigid body models identified for an off-the-shelf quadrotor. The quadrotor models used for wind estimation were characterized for hovering and steady ascending flight conditions ranging between 0 and 2 m/s. The closed-loop models were obtained using system identification algorithms to determine model structures and estimate model parameters. The wind measurement method was validated experimentally above the Virginia Tech Kentland Experimental Aircraft Systems Laboratory by comparing quadrotor and independent sensor measurements from a sonic anemometer and two SoDAR instruments. Comparison results demonstrated quadrotor wind estimation in close agreement with the independent wind velocity measurements. However, horizontal wind velocity profiles were difficult to validate using time-synchronized SoDAR measurements. Analysis of the noise intensity and signal-to-noise ratio of the SoDARs proved that close-proximity quadrotor operations can corrupt wind measurement from SoDARs, which has not previously been reported.

2.
Sensors (Basel) ; 19(7)2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30987162

ABSTRACT

The transport of material through the atmosphere is an issue with wide ranging implications for fields as diverse as agriculture, aviation, and human health. Due to the unsteady nature of the atmosphere, predicting how material will be transported via the Earth's wind field is challenging. Lagrangian diagnostics, such as Lagrangian coherent structures (LCSs), have been used to discover the most significant regions of material collection or dispersion. However, Lagrangian diagnostics can be time-consuming to calculate and often rely on weather forecasts that may not be completely accurate. Recently, Eulerian diagnostics have been developed which can provide indications of LCS and have computational advantages over their Lagrangian counterparts. In this paper, a methodology is developed for estimating local Eulerian diagnostics from wind velocity data measured by a single fixed-wing unmanned aircraft system (UAS) flying in a circular arc. Using a simulation environment, driven by realistic atmospheric velocity data from the North American Mesoscale (NAM) model, it is shown that the Eulerian diagnostic estimates from UAS measurements approximate the true local Eulerian diagnostics and also predict the passage of LCSs. This methodology requires only a single flying UAS, making it easier and more affordable to implement in the field than existing alternatives, such as multiple UASs and Dopler LiDAR measurements. Our method is general enough to be applied to calculate the gradient of any scalar field.

3.
Bioinspir Biomim ; 10(1): 016002, 2015 Jan 05.
Article in English | MEDLINE | ID: mdl-25561166

ABSTRACT

Because of the relatively high flapping frequency associated with hovering insects and flapping wing micro-air vehicles (FWMAVs), dynamic stability analysis typically involves direct averaging of the time-periodic dynamics over a flapping cycle. However, direct application of the averaging theorem may lead to false conclusions about the dynamics and stability of hovering insects and FWMAVs. Higher-order averaging techniques may be needed to understand the dynamics of flapping wing flight and to analyze its stability. We use second-order averaging to analyze the hovering dynamics of five insects in response to high-amplitude, high-frequency, periodic wing motion. We discuss the applicability of direct averaging versus second-order averaging for these insects.


Subject(s)
Biological Clocks/physiology , Flight, Animal/physiology , Insecta/physiology , Models, Biological , Rheology/methods , Wings, Animal/physiology , Animals , Computer Simulation , Linear Models , Orientation/physiology , Oscillometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...