Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38293171

ABSTRACT

Yersinia pestis , one of the deadliest bacterial pathogens ever known, is responsible for three plague pandemics and several epidemics, with over 200 million deaths during recorded history. Due to high genomic plasticity, Y. pestis is amenable to genetic mutations as well as genetic engineering that can lead to the emergence or intentional development of pan-drug resistant strains. The dissemination of such Y. pestis strains could be catastrophic, with public health consequences far more daunting than those caused by the recent COVID-19 pandemic. Thus, there is an urgent need to develop novel, safe, and effective treatment approaches for managing Y. pestis infections. This includes infections by antigenically distinct strains for which vaccines, none FDA approved yet, may not be effective, and those that cannot be controlled by approved antibiotics. Lytic bacteriophages provide one such alternative approach. In this study, we examined post-exposure efficacy of a bacteriophage cocktail, YPP-401, to combat pneumonic plague caused by Y. pestis CO92. YPP-401 is a four-phage preparation with a 100% lytic activity against a panel of 68 genetically diverse Y. pestis strains. Using a pneumonic plague aerosol challenge model in gender-balanced Brown Norway rats, YPP-401 demonstrated ∼88% protection when delivered 18 hours post-exposure for each of two administration routes (i.e., intraperitoneal and intranasal) in a dose-dependent manner. Our studies suggest that YPP-401 could provide an innovative, safe, and effective approach for managing Y. pestis infections, including those caused by naturally occurring or intentionally developed strains that cannot be managed by vaccines in development and antibiotics.

2.
Viruses ; 15(4)2023 03 30.
Article in English | MEDLINE | ID: mdl-37112867

ABSTRACT

Staphylococcus aureus causes intramammary infections (IMIs), which are refractory to antibiotic treatment and frequently result in chronic mastitis. IMIs are the leading cause of conventional antibiotic use in dairy farms. Phage therapy represents an alternative to antibiotics to help better manage mastitis in cows, reducing the global spread of resistance. A mouse mastitis model of S. aureus IMI was used to study the efficacy of a new cocktail of five lytic S. aureus-specific phages (StaphLyse™), administered either via the intramammary (IMAM) route or intravenously (IV). The StaphLyse™ phage cocktail was stable in milk for up to one day at 37 °C and up to one week at 4 °C. The phage cocktail was bactericidal in vitro against S. aureus in a dose-dependent manner. A single IMAM injection of this cocktail given 8 h after infection reduced the bacterial load in the mammary glands of lactating mice infected with S. aureus, and as expected, a two-dose regimen was more effective. Prophylactic use (4 h pre-challenge) of the phage cocktail was also effective, reducing S. aureus levels by 4 log10 CFU per gram of mammary gland. These results suggest that phage therapy may be a viable alternative to traditional antibiotics for the control of S. aureus IMIs.


Subject(s)
Bacteriophages , Mastitis, Bovine , Staphylococcal Infections , Female , Animals , Mice , Cattle , Staphylococcus aureus , Lactation , Mastitis, Bovine/drug therapy , Mastitis, Bovine/microbiology , Disease Models, Animal , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Milk/microbiology , Staphylococcal Infections/microbiology
3.
Curr Opin Biotechnol ; 78: 102805, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36162186

ABSTRACT

Foodborne pathogen contamination causes approximately 47 million cases of foodborne illness in the United States and renders thousands of pounds of food products inedible, aggravating the already dire situation of food loss. Reducing foodborne contamination not only improves overall global public health but also reduces food waste and loss. Phage biocontrol or phage-mediated reduction of bacterial foodborne pathogens in various foods has been gaining interest recently as an effective and environmentally friendly food-safety approach. Consequently, several commercial phage-based food-safety products have been developed and are increasingly implemented by the food industry in the United States. This review focuses on the use of phage biocontrol in mitigating bacterial pathogen contamination in various food products with a special emphasis on applications to fresh produce.


Subject(s)
Bacteriophages , Foodborne Diseases , Refuse Disposal , Humans , Food Microbiology , Food , Food Contamination , Foodborne Diseases/prevention & control , Foodborne Diseases/microbiology
4.
J Crohns Colitis ; 16(10): 1617-1627, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35997152

ABSTRACT

BACKGROUND AND AIMS: Adherent invasive Escherichia coli [AIEC] are recovered with a high frequency from the gut mucosa of Crohn's disease patients and are believed to contribute to the dysbiosis and pathogenesis of this inflammatory bowel disease. In this context, bacteriophage therapy has been proposed for specifically targeting AIEC in the human gut with no deleterious impact on the commensal microbiota. METHODS: The in vitro efficacy and specificity of a seven lytic phage cocktail [EcoActive™] was assessed against [i] 210 clinical AIEC strains, and [ii] 43 non-E. coli strains belonging to the top 12 most common bacterial genera typically associated with a healthy human microbiome. These data were supported by in vivo safety and efficacy assays conducted on healthy and AIEC-colonized mice, respectively. RESULTS: The EcoActive cocktail was effective in vitro against 95% of the AIEC strains and did not lyse any of the 43 non-E. coli commensal strains, in contrast to conventional antibiotics. Long-term administration of the EcoActive cocktail to healthy mice was safe and did not induce dysbiosis according to metagenomic data. Using a murine model of induced colitis of animals infected with the AIEC strain LF82, we found that a single administration of the cocktail failed to alleviate inflammatory symptoms, while mice receiving the cocktail twice a day for 15 days were protected from clinical and microscopical manifestations of inflammation. CONCLUSIONS: Collectively, the data support the approach of AIEC-targeted phage therapy as safe and effective treatment for reducing AIEC levels in the gut of IBD patients.


Subject(s)
Bacteriophages , Colitis , Animals , Humans , Mice , Bacterial Adhesion , Colitis/pathology , Disease Models, Animal , Dysbiosis/complications , Escherichia coli , Escherichia coli Infections/complications , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Intestinal Mucosa/pathology
5.
Curr Issues Mol Biol ; 40: 267-302, 2021.
Article in English | MEDLINE | ID: mdl-32644048

ABSTRACT

Bacteriophages, or phages, are one of the most, if not the most, ubiquitous organisms on Earth. Interest in various practical applications of bacteriophages has been gaining momentum recently, with perhaps the most attention (and most regulatory approvals) focused on their use to improve food safety. This approach, termed 'phage biocontrol' or 'bacteriophage biocontrol', includes both pre- and post-harvest application of phages as well as decontamination of the food contact surfaces in food processing facilities. This review focuses on post-harvest applications of phage biocontrol, currently the most commonly used type of phage mediation. We also briefly describe various commercially available phage preparations and discuss the challenges still facing this novel yet promising approach.


Subject(s)
Bacteria/virology , Bacterial Infections/prevention & control , Bacteriophages , Food Handling/methods , Food Inspection/methods , Food Microbiology/methods , Foodborne Diseases/prevention & control , Animals , Bacterial Infections/microbiology , Foodborne Diseases/microbiology , Humans
6.
J Food Prot ; 83(4): 668-676, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32221572

ABSTRACT

ABSTRACT: Management of Shiga toxin-producing Escherichia coli (STEC), including E. coli O157:H7, in food products is a major challenge for the food industry. Several interventions, such as irradiation, chemical disinfection, and pasteurization, have had variable success controlling STEC contamination. However, these interventions also indiscriminately kill beneficial bacteria in foods, may impact organoleptic properties of foods, and are not always environmentally friendly. Biocontrol using bacteriophage-based products to reduce or eliminate specific foodborne pathogens in food products has been gaining attention due to the specificity, safety, and environmentally friendly properties of lytic bacteriophages. We developed EcoShield PX, a cocktail of lytic bacteriophages, that specifically targets STEC. This study was conducted to examine the efficacy of this bacteriophage cocktail for reducing the levels of E. coli O157:H7 in eight food products: beef chuck roast, ground beef, chicken breast, cooked chicken, salmon, cheese, cantaloupe, and romaine lettuce. The food products were challenged with E. coli O157:H7 at ca. 3.0 log CFU/g and treated with the bacteriophage preparation at ca. 1 × 106, 5 × 106, or 1 × 107 PFU/g. Application of 5 × 106 and 1 × 107 PFU/g resulted in significant reductions (P < 0.05) in E. coli O157:H7 levels of up to 97% in all foods. When bacteriophages (ca. 1 × 106 PFU/g) were used to treat lower levels of E. coli O157:H7 (ca. 1 to 10 CFU/10 g) on beef chuck roast samples, mimicking the levels of STEC found under real-life conditions in food processing plants, the prevalence of STEC in the samples was significantly reduced (P < 0.05) by ≥80%. Our results suggest that this STEC-targeting bacteriophage preparation can result in significant reduction of both the levels and prevalence of STEC in various foods and, therefore, may help improve the safety and reduce the risk of recalls of foods at high risk for STEC contamination.


Subject(s)
Bacteriophages/physiology , Escherichia coli O157 , Food Contamination/prevention & control , Animals , Cattle , Escherichia coli O157/growth & development , Food Microbiology , Food Safety , Prevalence , Shiga-Toxigenic Escherichia coli
7.
J Food Prot ; 82(8): 1336-1349, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31313962

ABSTRACT

Nontyphoidal Salmonella strains continue to be a major cause of foodborne illness globally. One intriguing approach to reducing the risk of salmonellosis is the direct ingestion of phages targeting Salmonella to enhance natural gut resilience and provide protection during foodborne disease outbreaks. We evaluated the ability of a prophylactically administered bacteriophage cocktail, the foodborne outbreak pill (FOP) targeting Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella, to resolve a Salmonella infection in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME), a simulated gut platform populated by the human intestinal microbiome of healthy donors. The FOP preparation eliminated Salmonella enterica serovar Typhimurium from the colon compartment of the SHIME platform but health-associated metabolites, such as short-chain fatty acids and lactate, remained stable or increased in a donor-dependent manner. In studies of human intestinal cells, pretreatment of Salmonella Typhimurium with the FOP cocktail preserved lipopolysaccharide-stimulated signaling in a Caco-2-THP-1 Transwell system and prevented destruction of the Caco-2 monolayer by Salmonella. Adhesion and invasion of intestinal epithelial cells by Salmonella-a critical factor in Salmonella pathogenesis-was blunted when the bacteria were incubated with the FOP preparation before addition to the monolayer. The FOP phage cocktail was effective for (i) eliminating Salmonella from a simulated human gut without disturbing the indigenous microbiota and (ii) reducing the risk of invasion by Salmonella into the intestinal epithelia. These results suggest that the FOP preparation may be of value for reducing the risk of salmonellosis in humans, e.g., during foodborne disease outbreaks.


Subject(s)
Bacteriophages , Gastrointestinal Microbiome , Salmonella typhimurium , Bacteriophages/physiology , Caco-2 Cells , Colon/microbiology , Cytokines/metabolism , Humans , In Vitro Techniques , Salmonella typhimurium/virology , Signal Transduction
8.
Viruses ; 10(4)2018 04 19.
Article in English | MEDLINE | ID: mdl-29671810

ABSTRACT

Foodborne illnesses remain a major cause of hospitalization and death worldwide despite many advances in food sanitation techniques and pathogen surveillance. Traditional antimicrobial methods, such as pasteurization, high pressure processing, irradiation, and chemical disinfectants are capable of reducing microbial populations in foods to varying degrees, but they also have considerable drawbacks, such as a large initial investment, potential damage to processing equipment due to their corrosive nature, and a deleterious impact on organoleptic qualities (and possibly the nutritional value) of foods. Perhaps most importantly, these decontamination strategies kill indiscriminately, including many—often beneficial—bacteria that are naturally present in foods. One promising technique that addresses several of these shortcomings is bacteriophage biocontrol, a green and natural method that uses lytic bacteriophages isolated from the environment to specifically target pathogenic bacteria and eliminate them from (or significantly reduce their levels in) foods. Since the initial conception of using bacteriophages on foods, a substantial number of research reports have described the use of bacteriophage biocontrol to target a variety of bacterial pathogens in various foods, ranging from ready-to-eat deli meats to fresh fruits and vegetables, and the number of commercially available products containing bacteriophages approved for use in food safety applications has also been steadily increasing. Though some challenges remain, bacteriophage biocontrol is increasingly recognized as an attractive modality in our arsenal of tools for safely and naturally eliminating pathogenic bacteria from foods.


Subject(s)
Bacteriophages/growth & development , Food Microbiology , Food Safety/methods , Food-Processing Industry/methods , Foodborne Diseases/prevention & control , Humans
9.
PLoS One ; 12(3): e0175256, 2017.
Article in English | MEDLINE | ID: mdl-28362863

ABSTRACT

ShigaShield™ is a phage preparation composed of five lytic bacteriophages that specifically target pathogenic Shigella species found in contaminated waters and foods. In this study, we examined the efficacy of various doses (9x105-9x107 PFU/g) of ShigaShield™ in removing experimentally added Shigella on deli meat, smoked salmon, pre-cooked chicken, lettuce, melon and yogurt. The highest dose (2x107 or 9x107 PFU/g) of ShigaShield™ applied to each food type resulted in at least 1 log (90%) reduction of Shigella in all the food types. There was significant (P<0.01) reduction in the Shigella levels in all phage treated foods compared to controls, except for the lowest phage dose (9x105 PFU/g) on melon where reduction was only ca. 45% (0.25 log). The genomes of each component phage in the cocktail were fully sequenced and analyzed, and they were found not to contain any "undesirable genes" including those listed in the US Code for Federal Regulations (40 CFR Ch1). Our data suggest that ShigaShield™ (and similar phage preparations with potent lytic activity against Shigella spp.) may offer a safe and effective approach for reducing the levels of Shigella in various foods that may be contaminated with the bacterium.


Subject(s)
Bacteriophages/physiology , Shigella sonnei/virology , Animals , Chickens/microbiology , Cucurbitaceae/microbiology , Food Contamination/prevention & control , Lactuca/microbiology , Meat/microbiology , Yogurt/microbiology
10.
Bacteriophage ; 6(3): e1220347, 2016.
Article in English | MEDLINE | ID: mdl-27738557

ABSTRACT

Contamination of pet food with Salmonella is a serious public health concern, and several disease outbreaks have recently occurred due to human exposure to Salmonella tainted pet food. The problem is especially challenging for raw pet foods (which include raw meats, seafood, fruits, and vegetables). These foods are becoming increasingly popular because of their nutritional qualities, but they are also more difficult to maintain Salmonella-free because they lack heat-treatment. Among various methods examined to improve the safety of pet foods (including raw pet food), one intriguing approach is to use bacteriophages to specifically kill Salmonella serotypes. At least 2 phage preparations (SalmoFresh® and Salmonelex™) targeting Salmonella are already FDA cleared for commercial applications to improve the safety of human foods. However, similar preparations are not yet available for pet food applications. Here, we report the results of evaluating one such preparation (SalmoLyse®) in reducing Salmonella levels in various raw pet food ingredients (chicken, tuna, turkey, cantaloupe, and lettuce). Application of SalmoLyse® in low (ca. 2-4×106 PFU/g) and standard (ca. 9×106 PFU/g) concentrations significantly (P < 0.01) reduced (by 60-92%) Salmonella contamination in all raw foods examined compared to control treatments. When SalmoLyse®-treated (ca. 2×107 PFU/g) dry pet food was fed to cats and dogs, it did not trigger any deleterious side effects in the pets. Our data suggest that the bacteriophage cocktail lytic for Salmonella can significantly and safely reduce Salmonella contamination in various raw pet food ingredients.

11.
Food Microbiol ; 52: 42-8, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26338115

ABSTRACT

ListShield™, a commercially available bacteriophage cocktail that specifically targets Listeria monocytogenes, was evaluated as a bio-control agent for L. monocytogenes in various Ready-To-Eat foods. ListShield™ treatment of experimentally contaminated lettuce, cheese, smoked salmon, and frozen entrèes significantly reduced (p < 0.05) L. monocytogenes contamination by 91% (1.1 log), 82% (0.7 log), 90% (1.0 log), and 99% (2.2 log), respectively. ListShield™ application, alone or combined with an antioxidant/anti-browning solution, resulted in a statistically significant (p < 0.001) 93% (1.1 log) reduction of L. monocytogenes contamination on apple slices after 24 h at 4 °C. Treatment of smoked salmon from a commercial processing facility with ListShield™ eliminated L. monocytogenes (no detectable L. monocytogenes) in both the naturally contaminated and experimentally contaminated salmon fillets. The organoleptic quality of foods was not affected by application of ListShield™, as no differences in the color, taste, or appearance were detectable. Bio-control of L. monocytogenes with lytic bacteriophage preparations such as ListShield™ can offer an environmentally-friendly, green approach for reducing the risk of listeriosis associated with the consumption of various foods that may be contaminated with L. monocytogenes.


Subject(s)
Bacteriophages/physiology , Cheese/microbiology , Fish Products/microbiology , Food Contamination/prevention & control , Food Preservation/methods , Frozen Foods/microbiology , Lactuca/microbiology , Listeria monocytogenes/virology , Malus/microbiology , Animals , Listeria monocytogenes/growth & development , Salmon/microbiology
12.
J Food Prot ; 78(1): 97-103, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25581183

ABSTRACT

Human salmonellosis has been associated with contaminated pet foods and treats. Therefore, there is interest in identifying novel approaches for reducing the risk of Salmonella contamination within pet food manufacturing environments. The use of lytic bacteriophages shows promise as a safe and effective way to mitigate Salmonella contamination in various food products. Bacteriophages are safe, natural, highly targeted antibacterial agents that specifically kill bacteria and can be targeted to kill food pathogens without affecting other microbiota. In this study, we show that a cocktail containing six bacteriophages had a broadspectrum activity in vitro against a library of 930 Salmonella enterica strains representing 44 known serovars. The cocktail was effective against 95% of the strains in this tested library. In liquid culture dose-ranging experiments, bacteriophage cocktail concentrations of ≥10(8) PFU/ml inactivated more than 90% of the Salmonella population (10(1) to 10(3) CFU/ml). Dried pet food inoculated with a mixture containing equal proportions of Salmonella serovars Enteritidis (ATCC 4931), Montevideo (ATCC 8387), Senftenberg (ATCC 8400), and Typhimurium (ATCC 13311) and then surface treated with the six-bacteriophage cocktail (≥2.5 ± 1.5 × 10(6) PFU/g) achieved a greater than 1-log (P < 0.001) reduction compared with the phosphate-buffered saline-treated control in measured viable Salmonella within 60 min. Moreover, this bacteriophage cocktail reduced natural contamination in samples taken from an undistributed lot of commercial dried dog food that tested positive for Salmonella. Our results indicate that bacteriophage biocontrol of S. enterica in dried pet food is technically feasible.


Subject(s)
Bacteriophages/physiology , Food Microbiology , Food, Preserved/microbiology , Salmonella Food Poisoning/prevention & control , Salmonella enterica/virology , Animals , Dogs , Pets , Salmonella Food Poisoning/veterinary
13.
Bacteriophage ; 3(3): e25697, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-24228226

ABSTRACT

A cocktail of six lytic bacteriophages, SalmoFresh™, significantly (p < 0.05) reduced the number of surface-applied Salmonella Kentucky and Brandenburg from stainless steel and glass surfaces by > 99% (2.1-4.3 log). Both strains were susceptible to SalmoFresh™ in the spot-test assay. Conversely, SalmoFresh™ was unable to reduce surface contamination with a Salmonella Paratyphi B strain that was not susceptible to the phage cocktail in the spot-test assay. However, by replacing two SalmoFresh™ component phages with two new phages capable of lysing the Paratyphi B strain in the spot-test assay, the target range of the cocktail was shifted to include the Salmonella Paratyphi B strain. The modified cocktail, SalmoLyse™, was able to significantly (p < 0.05) reduce surface contamination of the Paratyphi B strain by > 99% (2.1-4.1 log). The data show that both phage cocktails were effective in significantly reducing the levels of Salmonella on hard surfaces, provided the contaminating strains were susceptible in the spot-test (i.e., spot-test susceptibility was indicative of efficacy in subsequent surface decontamination studies). The data also support the concept that phage preparations can be customized to meet the desired antibacterial application.

14.
Bacteriophage ; 2(3): 178-185, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-23275869

ABSTRACT

Foods contaminated with Escherichia coli O157:H7 cause more than 63,000 foodborne illnesses in the United States every year, resulting in a significant economic impact on medical costs and product liabilities. Efforts to reduce contamination with E. coli O157:H7 have largely focused on washing, application of various antibacterial chemicals, and gamma-irradiation, each of which has practical and environmental drawbacks. A relatively recent, environmentally-friendly approach proposed for eliminating or significantly reducing E. coli O157:H7 contamination of foods is the use of lytic bacteriophages as biocontrol agents. We found that EcoShield™, a commercially available preparation composed of three lytic bacteriophages specific for E. coli O157:H7, significantly (p < 0.05) reduced the levels of the bacterium in experimentally contaminated beef by ≥ 94% and in lettuce by 87% after a five minute contact time. The reduced levels of bacteria were maintained for at least one week at refrigerated temperatures. However, the one-time application of EcoShield™ did not protect the foods from recontamination with E. coli O157:H7. Our results demonstrate that EcoShield™ is effective in significantly reducing contamination of beef and lettuce with E. coli O157:H7, but does not protect against potential later contamination due to, for example, unsanitary handling of the foods post processing.

15.
Gene ; 391(1-2): 53-62, 2007 Apr 15.
Article in English | MEDLINE | ID: mdl-17275217

ABSTRACT

In Corynebacterium diphtheriae, diphtheria toxin is encoded by the tox gene of some temperate corynephages such as beta. beta-like corynephages are capable of inserting into the C. diphtheriae chromosome at two specific sites, attB1 and attB2. Transcription of the phage-encoded tox gene, and many chromosomally encoded genes, is regulated by the DtxR protein in response to Fe(2+) levels. Characterizing DtxR-dependent gene regulation is pivotal in understanding diphtheria pathogenesis and mechanisms of iron-dependent gene expression; although this has been hampered by a lack of molecular genetic tools in C. diphtheriae and related Coryneform species. To expand the systems for genetic manipulation of C. diphtheriae, we constructed plasmid vectors capable of integrating into the chromosome. These plasmids contain the beta-encoded attP site and the DIP0182 integrase gene of C. diphtheriae NCTC13129. When these vectors were delivered to the cytoplasm of non-lysogenic C. diphtheriae, they integrated into either the attB1 or attB2 sites with comparable frequency. Lysogens were also transformed with these vectors, by virtue of the second attB site. An integrated vector carrying an intact dtxR gene complemented the mutant phenotypes of a C. diphtheriae DeltadtxR strain. Additionally, strains of beta-susceptible C. ulcerans, and C. glutamicum, a species non-permissive for beta, were each transformed with these vectors. This work significantly extends the tools available for targeted transformation of both pathogenic and non-pathogenic Corynebacterium species.


Subject(s)
Attachment Sites, Microbiological/genetics , Bacteriophages/genetics , Corynebacterium/genetics , Virus Integration , Bacterial Proteins/genetics , Blotting, Southern , Chromosomes, Bacterial/genetics , Corynebacterium/virology , Corynebacterium diphtheriae/genetics , Corynebacterium diphtheriae/virology , DNA, Bacterial/genetics , DNA-Binding Proteins/genetics , Electroporation , Escherichia coli/genetics , Escherichia coli/virology , Genetic Complementation Test , Genetic Vectors/genetics , Mutagenesis, Insertional , Mutation , Polymerase Chain Reaction , Species Specificity
16.
Mol Genet Metab ; 86(4): 431-40, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16256388

ABSTRACT

Yeast deletion models have general utility for the study of a variety of inherited metabolic disorders. Mutations in the mitochondrial ornithine transporter result in hyperammonemia, hyperornithinemia, homocitrullinuria syndrome, a disorder of the urea cycle. To study the effects of mutations in a model system that more closely resembles the in vivo environment, we have developed an expression system based on a yeast strain lacking its endogenous ornithine transporter homologue. Wild-type human ornithine transporter and a recurrent mutation, DeltaF 188, were expressed and characterized with this system. The wild-type transporter appeared to insert into yeast mitochondria in the same orientation as in mammalian mitochondria. It showed stereospecificity, strong antiport activity and ornithine transport was competed by citrulline and arginine. The DeltaF 188 mutant was not incorporated into the membrane to the same extent as wild type, but retained significant residual activity and lost stereospecificity. In these isolated mitochondria, samarium chloride was found to be a potent blocker of transport compared to previously reported sulfhydryl-based inhibitors. A low-affinity background transport activity that promoted the exchange of ornithine for either acidic or basic amino acids was observed. This yeast model can readily be extended to the study of protein:protein interactions. In this manner, the use of yeast deletion strains can serve as a general framework to perform metabolic pathway analysis.


Subject(s)
Amino Acid Transport Systems, Basic/genetics , Amino Acid Transport Systems, Basic/metabolism , Mitochondria/metabolism , Ornithine/metabolism , Proteins/genetics , Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Transport Systems, Basic/antagonists & inhibitors , Amino Acid Transport Systems, Basic/chemistry , Base Sequence , Biological Transport, Active/drug effects , Chlorides/pharmacology , Cloning, Molecular , DNA, Complementary/genetics , Humans , In Vitro Techniques , Mitochondrial Membrane Transport Proteins , Models, Molecular , Mutation , Protein Conformation , Proteins/antagonists & inhibitors , Proteins/chemistry , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Samarium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...