Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rep Pract Oncol Radiother ; 23(5): 346-359, 2018.
Article in English | MEDLINE | ID: mdl-30127675

ABSTRACT

AIM: The aim of this study was to investigate the sensitivity of the trajectory log file based quality assurance to detect potential errors such as MLC positioning and gantry positioning by comparing it with EPID measurement using the most commonly used criteria of 3%/3 mm. MATERIALS AND METHODS: An in-house program was used to modified plans using information from log files, which can then be used to recalculate a new dose distribution. The recalculated dose volume histograms (DVH) were compared with the originals to assess differences in target and critical organ dose. The dose according to the differences in DVH was also compared with dosimetry from an electronic portal imaging device. RESULTS: In all organs at risk (OARs) and planning target volumes (PTVs), there was a strong positive linear relationship between MLC positioning and dose error, in both IMRT and VMAT plans. However, gantry positioning errors exhibited little impact in VMAT delivery. For the ten clinical cases, no significant correlations were found between gamma passing rates under the criteria of 3%/3 mm for the composite dose and the mean dose error in DVH (r < 0.3, P > 0.05); however, a significant positive correlation was found between the gamma passing rate of 3%/3 mm (%) averaged over all fields and the mean dose error in the DVH of the VMAT plans (r = 0.59, P < 0.001). CONCLUSIONS: This study has successfully shown the sensitivity of the trajectory log file to detect the impact of systematic MLC errors and random errors in dose delivery and analyzed the correlation of gamma passing rates with DVH.

2.
J Med Phys ; 43(2): 119-128, 2018.
Article in English | MEDLINE | ID: mdl-29962690

ABSTRACT

The delivery consistency of a Varian Edge linear accelerator over the entire course of treatment for nasopharynx carcinoma (NPC) and prostate cancer intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) treatment plans was investigated using four different approaches. Three NPCs and three prostate plans were delivered in 34 and 29 consecutive days, respectively, using a Varian Edge equipped with a 120 high-definition (HD) multileaf collimator (MLC). All deliveries were measured with an electronic portal imaging device (EPID), and MapCheck2 and ArcCheck commercial systems with gamma analysis used to compare the results of all daily measurements against the pretreatment patient-specific quality assurance. The daily log files generated were also assessed for differences between the actual and planned doses using an in-house program to replace the original values in the DICOM plan files with the delivered parameter values from the log file, and then exporting the plans back to the treatment planning system for reconstruction of the actual dose delivered. The trajectory log file and EPID methods showed very good agreement, with minimal deviations between the daily delivered and reference doses. However, comparisons of the MapCheck2 and ArcCheck with the EPID revealed statistically significant differences (P < 0.001, one-tailed) with greater daily fluctuations, raising concerns over the performance, and reliability of the MapCheck2 and ArcCheck systems when being used to identify IMRT and VMAT plans with poor dosimetric accuracy. We conclude that the Varian Edge linear accelerator equipped with a 120 HD MLC can consistently deliver IMRT and VMAT plans over the entire treatment course.

SELECTION OF CITATIONS
SEARCH DETAIL
...