Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem J ; 246(3): 737-44, 1987 Sep 15.
Article in English | MEDLINE | ID: mdl-2825651

ABSTRACT

1. The intermediate structures formed during dialysis of mixtures of cholate, phospholipid and cytochrome c oxidase were analysed by gel chromatography and electron microscopy. Measurements of trapped phosphate and the degree of respiratory control were used to assess the integrity of the vesicular structures formed. Protein orientation in the bilayer was monitored by the accessibility of cytochrome c to cytochrome c oxidase. 2. The results indicate that proteoliposome formation by the detergent-dialysis procedure takes place in three distinct stages. In the first stage, cholate/phospholipid and cholate/phospholipid/protein micelles coexist in solution and grow in size as the detergent is slowly removed. At a detergent/phospholipid molar ratio of about 0.2, micelle fusion results in the formation of large bilayer aggregates permeable to both phosphate and cytochrome c. It is at this stage that cytochrome c oxidase is incorporated into the bilayer. In the final stage of dialysis the bilayer sheets fragment into small unilamellar vesicles. 3. The orientation of membrane protein in the final vesicles appears to be determined by the effect of protein conformation on the initial curvature of the bilayer sheets during the fragmentation process.


Subject(s)
Liposomes/metabolism , Proteolipids/biosynthesis , Cholic Acid , Cholic Acids/metabolism , Chromatography, Gel , Detergents/pharmacology , Dialysis , Electron Transport Complex IV/metabolism , Microscopy, Electron , Tetramethylphenylenediamine/pharmacology
2.
Biochem J ; 173(3): 851-6, 1978 Sep 01.
Article in English | MEDLINE | ID: mdl-708375

ABSTRACT

The binding of pig brain acetylcholinesterase to artificial phospholipid membranes was investigated at different temperatures. Calculation of the thermodynamic parameters revealed a small negative enthalpy change, but a large negative change in the free energy and a large positive change in the entropy on binding. The large entropy change might be interpreted as being responsible for forming the enzyme-membrane complex and was indicative of hydrophobic interactions between lipid and protein. This conclusion would also favour the hypothesis that the enzyme was an integral protein. Further support for this theory was provided by the study of acetylcholinesterase binding to liposomes containing the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine. Lowering the temperature below the transition temperature or incorporating cholesterol into the liposomes decreased enzyme binding. Both factors could be interpreted as decreasing the fluidity of the hydrocarbon side chains of the phospholipids, causing an increase in bilayer thickness due to closer packing of side chains. This membrane condensation would certainly not favour the binding of integral protein molecules.


Subject(s)
Acetylcholinesterase/metabolism , Brain/enzymology , Liposomes/metabolism , Animals , Cholesterol/pharmacology , In Vitro Techniques , Kinetics , Protein Binding/drug effects , Swine , Temperature , Thermodynamics
3.
Biochem J ; 159(3): 627-31, 1976 Dec 01.
Article in English | MEDLINE | ID: mdl-12743

ABSTRACT

1. The adsorption of [14C]carboxymethylated glyceraldehyde 3-phosphate dehydrogenase to negatively charged liposomes of phsphatidic acid/phosphatidylcholine (3:7, w/w) was investigated. The apparent association constant at I/2 = 60, pH 7.6, was 0.4 X 10(6)M-1. Adsorption decreased as ionic strength and pH were increased. 2. In the presence of negatively charged liposomes, the Km value for glyceraldehyde 3-phosphate of glyceraldehyde 3-phosphate dehydrogenase was increased and Vmax. decreased. In the presence of positively charged liposomes, the Km value for glyceraldehyde 3-phosphate decreased and there was no significant change in Vmax. Addition of Triton X-100 abolished the effect of both positively and negatively charged liposomes on the kinetic properties of the enzyme.


Subject(s)
Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Phospholipids/metabolism , Adsorption , Hydrogen-Ion Concentration , Kinetics , Liposomes , Osmolar Concentration
4.
Biochem J ; 153(1): 93-100, 1976 Jan 01.
Article in English | MEDLINE | ID: mdl-4058

ABSTRACT

The adsorption of [14C] alkylated glyceraldehyde 3-phosphate dehydrogenase from rabbit muscle to condensed monolayers of phosphatidic acid was investigated under a variety of conditions. 2. The rate constant for association at 20 degrees C depended on ionic strength. At I/2=60mM the rate constant was 0.39min-1. At I/2=260mM it decreased to 0.27min-1. 3. The apparent association constant (Kass.) for adsorption at I/2=60mM was 1.06 X 10(6)M-1 and was strongly influenced by subphase changes in pH and ionic strength. Measurements of Kass. at 20 degrees and 5 degrees C gave a value for the apparent enthalpy change on adsorption of -33kJ-mol-1. Calculations of the apparent change in free energy and apparent entropy change for the adsorption process gave values of -34kJ-mol-1 and +2J-K-1-mol-1 respectively. 4. Decreasing the amount of phosphatidic acid in the monolayer by replacement with phosphatidylcholine caused the shape of the adsorption isotherm to change from apparent hyperbolic to sigmoid. Subphase changes in pH or ionic strength did not affect the shape of the adsorption isotherm. However, adsorption of enzyme on monolayers of 100% phosphatidic acid in the presence of 1mM-CaCl2 was sigmoid in nature. 5. It is concluded that glyceraldehyde 3-phosphate dehydrogenase binds to condensed charged monolayers by multiple electrostatic interactions. At low concentrations of phosphatidic acid in the monolayer or in the presence of Ca2+, this occurs in a two-step process and depends on lateral diffusion of phosphatidic acid for strong binding to take place.


Subject(s)
Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Phospholipids/metabolism , Adsorption , Animals , Hydrogen-Ion Concentration , Phosphatidylcholines/metabolism , Potassium Chloride/pharmacology , Rabbits , Temperature , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...