Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Talanta ; 215: 120902, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32312447

ABSTRACT

In this study, we have developed a simple and effective hybrid extraction method based on the incorporation of raw carbon nanosorbents and octanol in the pores of a hollow-fiber membrane for improving the extraction efficiency of relatively polar organic compounds. Trihalomethanes (THMs) were used as model analytes. Three types of carbon nanosorbents (graphite, graphene, and multi-walled carbon nanotubes) were studied. The carbon sorbent incorporating membrane was used in a two-phase mode liquid-phase microextraction, with 1-octanol as the acceptor solution. Using a graphite-reinforced hollow-fiber membrane and an extraction time of 10 min, enrichment factors of 40-71 were obtained for trichloromethane, bromodichloromethane, bromoform, and chlorodibromomethane. Linear working ranges of 0.2-100 µg L-1 and limits of detection ranging from 0.01 µg L-1 (for CHCl2Br and CHClBr2) to 0.1 µg L-1 (for CHCl3) were achieved. The minimum detectable concentrations were far below the maximum concentration levels (60-200 µg L-1) set by the WHO for drinking water. The carbon-sorbent-reinforced hollow-fiber liquid-phase microextraction afforded higher extraction efficiency and shorter extraction time compared with conventional hollow-fiber liquid-phase microextraction. Finally, the method was applied to the analysis of real water samples, such as drinking water, tap water, and swimming pool water samples.

2.
Talanta ; 185: 611-619, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29759249

ABSTRACT

A novel concept for automation of nanostructured hollow-fiber supported microextraction, combining the principles of liquid-phase microextraction (LPME) and sorbent microextraction synergically, using mesofluidic platforms is proposed herein for the first time, and demonstrated with the determination of acidic drugs (namely, ketoprofen, ibuprofen, diclofenac and naproxen) in urine as a proof-of-concept applicability. Dispersed carbon nanofibers (CNF) are immobilized in the pores of a single-stranded polypropylene hollow fiber (CNF@HF) membrane, which is thereafter accommodated in a stereolithographic 3D-printed extraction chamber without glued components for ease of assembly. The analytical method involves continuous-flow extraction of the acidic drugs from a flowing stream donor (pH 1.7) into an alkaline stagnant acceptor (20 mmol L-1 NaOH) containing 10% MeOH (v/v) across a dihexyl ether impregnated CNF@HF membrane. The flow setup features entire automation of the microextraction process including regeneration of the organic film and on-line injection of the analyte-laden acceptor phase after downstream neutralization into a liquid chromatograph (LC) for reversed-phase core-shell column-based separation. Using a 12-cm long CNF@HF and a sample volume of 6.4 mL, linear dynamic ranges of ketoprofen, naproxen, diclofenac and ibuprofen, taken as models of non-steroidal anti-inflammatory drugs, spanned from ca. 5-15 µg L-1 to 500 µg L-1 with enhancement factors of 43-97 (against a direct injection of 10 µL standards into LC), and limits of detection from 1.6 to 4.3 µg L-1. Relative recoveries in real urine samples ranged from 97% to 105%, thus demonstrating the reliability of the automatic CNF@HF-LPME method for in-line matrix clean-up and determination of drugs in urine at therapeutically relevant concentrations.

SELECTION OF CITATIONS
SEARCH DETAIL