Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1838(1 Pt B): 429-37, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24060565

ABSTRACT

Engineered nanomaterials (ENM) have desirable properties that make them well suited for many commercial applications. However, a limited understanding of how ENM's properties influence their molecular interactions with biomembranes hampers efforts to design ENM that are both safe and effective. This paper describes the use of a tethered bilayer lipid membrane (tBLM) to characterize biomembrane disruption by functionalized silica-core nanoparticles. Electrochemical impedance spectroscopy was used to measure the time trajectory of tBLM resistance following nanoparticle exposure. Statistical analysis of parameters from an exponential resistance decay model was then used to quantify and analyze differences between the impedance profiles of nanoparticles that were unfunctionalized, amine-functionalized, or carboxyl-functionalized. All of the nanoparticles triggered a decrease in membrane resistance, indicating nanoparticle-induced disruption of the tBLM. Hierarchical clustering allowed the potency of nanoparticles for reducing tBLM resistance to be ranked in the order amine>carboxyl~bare silica. Dynamic light scattering analysis revealed that tBLM exposure triggered minor coalescence for bare and amine-functionalized silica nanoparticles but not for carboxyl-functionalized silica nanoparticles. These results indicate that the tBLM method can reproducibly characterize ENM-induced biomembrane disruption and can distinguish the BLM-disruption patterns of nanoparticles that are identical except for their surface functional groups. The method provides insight into mechanisms of molecular interaction involving biomembranes and is suitable for miniaturization and automation for high-throughput applications to help assess the health risk of nanomaterial exposure or identify ENM having a desired mode of interaction with biomembranes.


Subject(s)
Lipid Bilayers/chemistry , Nanoparticles/chemistry , Phosphatidylcholines/chemistry , Silicon Dioxide/chemistry , Triglycerides/chemistry , Dielectric Spectroscopy , Light , Nanoparticles/ultrastructure , Particle Size , Scattering, Radiation
2.
J Colloid Interface Sci ; 390(1): 211-6, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23083768

ABSTRACT

Electrochemical impedance spectroscopy (EIS) was used to characterize voltage-dependent closure of PorB class II (PorBII) porin from Neisseria meningitidis incorporated in a tethered bilayer lipid membrane (tBLM). The tBLM's lower leaflet was fabricated by depositing a self assembled monolayer (SAM) of 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (DPPTE) on a gold electrode, and the upper leaflet was formed by depositing1,2-dioleoyl-sn-glycero-3-phoshocholine (DOPC) liposomes. At 0mV bias DC potential, incorporation of PorBII decreased the membrane resistance (R(m)) from 2.5 MΩc m(2) to 0.6 MΩ cm(2), giving a ΔR(m) of 1.9 MΩ cm(2) and a normalized ΔR(m) (ΔR(m) divided by the R(m) of the tBLM without PorBII) of 76%. When the bias DC potential was increased to 200 mV, the normalized ΔR(m) value decreased to 20%. The effect of applied voltage on ΔR(m) was completely reversible, suggesting voltage-dependent closure of PorBII. The voltage dependence of PorBII was further studied in a planar bilayer lipid membrane made from 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhytPC). Following a single insertion event, PorBII exhibited multiple conductance states, with reversible, voltage-dependent closure of PorBII porin occurring at high transmembrane potentials. The trimetric porin closed in three discrete steps, each step corresponding to closure of one conducting monomer unit. The most probable single channel conductance was 4.2 nS. The agreement between results obtained with the tBLM and pBLM platforms demonstrates the utility of EIS to screen channel proteins immobilized in tBLM for voltage-gated behavior.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Ion Channel Gating , Lipid Bilayers/chemistry , Neisseria meningitidis/chemistry , Phosphatidylcholines/chemistry , Porins/chemistry , Dielectric Spectroscopy
3.
Environ Sci Technol ; 46(5): 2813-20, 2012 Mar 06.
Article in English | MEDLINE | ID: mdl-22324484

ABSTRACT

Shewanella species grow in widely disparate environments and play key roles in elemental cycling, especially in environments with varied redox conditions. To obtain a system-level understanding of Shewanella's robustness and versatility, the complex interplay of cellular growth, metabolism, and transport under conditions of limiting carbon sources, energy sources, and electron acceptors must be elucidated. In this paper, population-level taxis of Shewanella oneidensis MR-1 cells in the presence of a rate-limiting, insoluble electron acceptor was investigated. A novel mechanism, mediated energy taxis, is proposed by which Shewanella use riboflavin as both an electron shuttle and an attractant to direct cell movement toward local sources of insoluble electron acceptors. The cells secrete reduced riboflavin, which diffuses to a nearby particle containing an insoluble electron acceptor and is oxidized. The oxidized riboflavin then diffuses away from the particle, establishing a spatial gradient that draws cells toward the particle. Experimental and modeling results are presented to support this mechanism. S. oneidensis MR-1 cells inoculated into a uniform dispersion of MnO(2) particles in dilute agar exhibited taxis outward, creating a clear zone within which riboflavin was detected by mass spectrometry. Cells inoculated into dilute agar containing oxidized riboflavin similarly exhibited taxis, rapidly forming an expanding zone of reduced riboflavin. A mathematical model based on the proposed mechanism was able to predict experimental trends, including how concentrations of riboflavin and insoluble electron acceptors (e.g., MnO(2)) affected tactic cell migration.


Subject(s)
Chemotaxis , Electrons , Shewanella/cytology , Biological Assay , Chemotaxis/drug effects , Computer Simulation , Electron Transport/drug effects , Manganese Compounds/pharmacology , Models, Biological , Oxides/pharmacology , Riboflavin/pharmacology , Shewanella/drug effects , Shewanella/growth & development , Solubility/drug effects , Thermodynamics
4.
Environ Sci Technol ; 45(3): 1014-20, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21174460

ABSTRACT

To obtain a systems-level understanding of Shewanella biology and ecology, the influence of electron acceptor availability on Shewanella's growth, metabolism, and transport needs to be elucidated. The diffusion gradient chamber (DGC) is an experimental tool developed to study population-level microbial growth and motility in response to concentration gradients. In this paper, the response of populations of Shewanella oneidensis MR-1 cells to an applied single gradient of the electron acceptor fumarate and applied opposing gradients of fumarate and nitrate, also an electron acceptor, were studied in the DGC. Mathematical models capable of predicting cellular growth and chemotaxis under the influence of gradients were used to analyze the results. Examining wild-type cells grown in a single gradient of fumarate, we found that MR-1 cells formed a chemotactic band that migrated up the electron acceptor gradient essentially as predicted by the model. The predicted velocity of the chemotactic cell band advancing toward the chemoattractant source (0.139 cm/h, R(2) = 0.996) closely matched that measured in the DGC (0.134 cm/h, R(2) = 0.997). Investigating the impact of opposing gradients of nitrate and fumarate on the chemotactic behaviors of S. oneidensis MR-1 fumarate reductase and nitrate reductase mutants, we found that the DGC was able to separate these mutants based upon their abilities to use the available electron acceptors in accordance with model predictions. Differences in the ability of Shewanella species to respond to and use available electron acceptors is thought to play an important role in their ecology. Therefore, these results validate the use of the DGC system to measure and simulate Shewanella chemotaxis in response to electron acceptor gradients and establish it as a research tool to help elucidate Shewanella's role in environmental processes.


Subject(s)
Chemotaxis , Shewanella/physiology , Chemotactic Factors/metabolism , Diffusion Chambers, Culture , Electron Transport/physiology , Fumarates/metabolism , Models, Biological , Shewanella/growth & development
5.
Biochim Biophys Acta ; 1798(8): 1533-9, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20346913

ABSTRACT

Neuropathy target esterase (NTE) is an integral membrane protein localized in the endoplasmic reticulum in neurons. Irreversible inhibition of NTE by certain organophosphorus compounds produces a paralysis known as organophosphorus compound-induced delayed neuropathy. In vitro, NTE has phospholipase/lysophospholipase activity that hydrolyses exogenously added single-chain lysophospholipids in preference to dual-chain phospholipids, and NTE mutations have been associated with motor neuron disease. NTE's physiological role is not well understood, although recent studies suggest that it may control the cytotoxic accumulation of lysophospholipids in membranes. We used the NTE catalytic domain (NEST) to hydrolyze palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (p-lysoPC) to palmitic acid in bilayer membranes comprising 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and the fluorophore 1-oleoyl-2-[12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-sn-glycero-3-phosphocholine (NBD-PC). Translational diffusion coefficients (D(L)) in supported bilayer membranes were measured by fluorescence recovery after pattern photobleaching (FRAPP). The average D(L) for DOPC/p-lysoPC membranes without NEST was 2.44 microm(2)s(-1)+/-0.09; the D(L) for DOPC/p-lysoPC membranes containing NEST and diisopropylphosphorofluoridate, an inhibitor, was nearly identical at 2.45+/-0.08. By contrast, the D(L) for membranes comprising NEST, DOPC, and p-lysoPC was 2.28+/-0.07, significantly different from the system with inhibited NEST, due to NEST hydrolysis. Likewise, a system without NEST containing the amount of palmitic acid that would have been produced by NEST hydrolysis of p-lysoPC was identical at 2.26+/-0.06. These results indicate that NTE's catalytic activity can alter membrane fluidity.


Subject(s)
Carboxylic Ester Hydrolases/chemistry , Carboxylic Ester Hydrolases/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Lysophospholipids/chemistry , Lysophospholipids/metabolism , Catalytic Domain , Fatty Acids, Nonesterified/chemistry , Fatty Acids, Nonesterified/metabolism , Fluorescence Recovery After Photobleaching , Humans , Hydrolysis , In Vitro Techniques , Light , Membrane Fluidity , Microscopy, Electron, Transmission , Molecular Structure , Neurons/enzymology , Palmitic Acid/chemistry , Palmitic Acid/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Proteolipids/chemistry , Proteolipids/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Scattering, Radiation
6.
Hypertension ; 53(2): 228-35, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19075100

ABSTRACT

To test the hypothesis that activation of the transient receptor potential vanilloid 4 (TRPV4) channel conveys a hypotensive effect that is enhanced during salt load, male Wistar rats fed a normal-sodium (0.5%) or high-sodium (HS; 4%) diet for 3 weeks were given 4 alpha-phorbol 12,13-didecanoate (4 alpha-PDD), a specific TRPV4 activator, in the presence or absence of capsazepine, a selective TRPV1 blocker, ruthenium red, a TRPV4 blocker, or TRPV4 small hairpin RNA that selectively knockdowns TRPV4. 4 alpha-PDD (1, 2.5, or 5 mg/kg IV) dose-dependently decreased mean arterial pressure (P<0.05). HS enhanced 4 alpha-PDD-induced depressor effects as well as 4 alpha-PDD-mediated release of calcitonin gene-related peptide and substance P (P<0.001). Ruthenium red markedly blunted (P<0.001), whereas capsazepine slightly attenuated (P<0.05) 4 alpha-PDD-induced depressor effects in HS and normal-sodium diet rats. Ruthenium red alone increased baseline mean arterial pressure in both HS and normal-sodium diet rats with a greater magnitude in the former (P<0.05). Western blot analysis showed that HS increased TRPV4 expression in dorsal root ganglia and mesenteric arteries (P<0.05) but not the renal cortex and medulla. Gene-silencing approach revealed that TRPV4 small hairpin RNA downregulated TRPV4 expression leading to blunted 4 alpha-PDD-induced hypotension (P<0.05). Thus, TRPV4 activation decreases blood pressure in rats given a normal-sodium diet. HS enhances TRPV4 expression in sensory nerves/mesenteric arteries and TRPV4-mediated depressor effects and calcitonin gene-related peptide/substance P release such that HS causes a greater increase in blood pressure when TRPV4 is blocked. Our data indicate that TRPV4 activation may constitute a compensatory mechanism in preventing salt-induced increases in blood pressure.


Subject(s)
Blood Pressure/drug effects , Hypertension/prevention & control , Hypotension/physiopathology , Sodium Chloride, Dietary/pharmacology , TRPV Cation Channels/physiology , Animals , Blood Pressure/physiology , Calcitonin Gene-Related Peptide/metabolism , Capsaicin/analogs & derivatives , Capsaicin/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Ganglia, Spinal/metabolism , Hypertension/physiopathology , Hypotension/etiology , Kidney/metabolism , Male , Mesenteric Arteries/metabolism , Phorbol Esters/pharmacology , Rats , Rats, Wistar , Ruthenium Red/pharmacology , Salt Tolerance/physiology , Substance P/metabolism , TRPV Cation Channels/agonists , TRPV Cation Channels/antagonists & inhibitors
7.
J Colloid Interface Sci ; 322(2): 465-72, 2008 Jun 15.
Article in English | MEDLINE | ID: mdl-18387623

ABSTRACT

A tethered bilayer lipid membrane (tBLM) was fabricated on a gold electrode using 1,2-dipalmitoyl-sn-glycero-phosphothioethanol as a tethering lipid and the membrane fractions of Saccharomyces pombe yeast cells to deposit the upper leaflet. The membrane fractions were characterized using transmission electron microscopy and dynamic light scattering and found to be similar in size to small unilamellar vesicles of synthetic lipids. The dynamics of membrane-fraction deposition and rupture on the tethering-lipid layer were measured using quartz crystal microgravimetry. The electrochemical properties of the resulting tBLM were characterized using electrical impedance spectroscopy and cyclic voltammetry. The tBLM's electrical resistance was greater than 1 MOmegacm(2), suggesting a defect-free membrane. The suitability of tBLM produced using membrane fractions for measuring ion-channel activities was shown by a decrease in membrane resistance from 1.6 to 0.43 MOmegacm(2) following addition of gramicidin. The use of membrane fractions to form high-quality tBLM on gold electrodes suggests a new approach to characterize membrane proteins, in which the upper leaflet of the tBLM is deposited, and overexpressed membrane proteins are incorporated, in a single step. This approach would be especially useful for proteins whose activity is lost or altered during extraction, purification, and reconstitution, or whose activities are strongly influenced by the lipid composition of the bilayer.


Subject(s)
Ion Channels/analysis , Lipid Bilayers/chemistry , Biosensing Techniques , Cell Membrane/chemistry , Electrochemistry , Gold , Microscopy, Electron, Transmission , Molecular Structure , Schizosaccharomyces/chemistry , Surface Properties
9.
Article in English | MEDLINE | ID: mdl-16760079

ABSTRACT

Chemotaxis is an important mechanism by which microorganisms are dispersed in porous media. A vigorous chemotactic response to concentration gradients formed by microbial consumption of chemoattractants can accelerate transport of bacteria to highly contaminated regions of soils and sediments, enhancing the efficiency of in situ bioremediation operations. Although chemotaxis plays a key role in establishment of biodegradation zones in the subsurface, the effects of physical heterogeneity on bacterial motility are poorly understood. To investigate the influence of porous media heterogeneity on microbial chemotaxis, swarm plate migration experiments were conducted using Pseudomonas stutzeri strain KC, a denitrifying bacterium used for in situ biodegradation of carbon tetrachloride in groundwater. Swarm plate measurements indicate that strain KC is strongly chemotactic toward both acetate and nitrate. A three-component mathematical model was developed to describe the migration of strain KC. Estimates of chemotactic sensitivity were obtained in the homogeneous (agar) phase and in a heterogeneous medium of aquifer solids extracted from the Schoolcraft bioremediation field site in western Michigan. Interestingly, the motility of strain KC is significantly larger in the porous medium than in the aqueous phase. We hypothesize that chemotactic response is enhanced within the heterogeneous medium because chemoattractant gradients formed by nitrate consumption are larger in the confined spaces of the porous medium than in unconfined agar solution.


Subject(s)
Chemotaxis , Models, Biological , Nitrates/metabolism , Pseudomonas stutzeri/physiology , Acetates/metabolism , Biodegradation, Environmental , Porosity , Water Pollutants, Chemical/metabolism , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...