Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
J Mol Cell Cardiol ; 183: 70-80, 2023 10.
Article in English | MEDLINE | ID: mdl-37704101

ABSTRACT

BACKGROUND: The small conductance Ca2+-activated K+ current (ISK) is a potential therapeutic target for treating atrial fibrillation. AIM: To clarify, in rabbit and human atrial cardiomyocytes, the intracellular [Ca2+]-sensitivity of ISK, and its contribution to action potential (AP) repolarisation, under physiological conditions. METHODS: Whole-cell-patch clamp, fluorescence microscopy: to record ion currents, APs and [Ca2+]i; 35-37°C. RESULTS: In rabbit atrial myocytes, 0.5 mM Ba2+ (positive control) significantly decreased whole-cell current, from -12.8 to -4.9 pA/pF (P < 0.05, n = 17 cells, 8 rabbits). By contrast, the ISK blocker apamin (100 nM) had no effect on whole-cell current, at any set [Ca2+]i (∼100-450 nM). The ISK blocker ICAGEN (1 µM: ≥2 x IC50) also had no effect on current over this [Ca2+]i range. In human atrial myocytes, neither 1 µM ICAGEN (at [Ca2+]i âˆ¼ 100-450 nM), nor 100 nM apamin ([Ca2+]i âˆ¼ 250 nM) affected whole-cell current (5-10 cells, 3-5 patients/group). APs were significantly prolonged (at APD30 and APD70) by 2 mM 4-aminopyridine (positive control) in rabbit atrial myocytes, but 1 µM ICAGEN had no effect on APDs, versus either pre-ICAGEN or time-matched controls. High concentration (10 µM) ICAGEN (potentially ISK-non-selective) moderately increased APD70 and APD90, by 5 and 26 ms, respectively. In human atrial myocytes, 1 µM ICAGEN had no effect on APD30-90, whether stimulated at 1, 2 or 3 Hz (6-9 cells, 2-4 patients/rate). CONCLUSION: ISK does not flow in human or rabbit atrial cardiomyocytes with [Ca2+]i set within the global average diastolic-systolic range, nor during APs stimulated at physiological or supra-physiological (≤3 Hz) rates.


Subject(s)
Atrial Fibrillation , Myocytes, Cardiac , Animals , Humans , Rabbits , Myocytes, Cardiac/drug effects , Apamin/pharmacology , Small-Conductance Calcium-Activated Potassium Channels , Heart Atria/drug effects , Action Potentials/drug effects
2.
Pflugers Arch ; 474(12): 1311-1321, 2022 12.
Article in English | MEDLINE | ID: mdl-36131146

ABSTRACT

Atrial fibrillation (AF) from elevated adrenergic activity may involve increased atrial L-type Ca2+ current (ICaL) by noradrenaline (NA). However, the contribution of the adrenoceptor (AR) sub-types to such ICaL-increase is poorly understood, particularly in human. We therefore investigated effects of various broad-action and sub-type-specific α- and ß-AR antagonists on NA-stimulated atrial ICaL. ICaL was recorded by whole-cell-patch clamp at 37 °C in myocytes isolated enzymatically from atrial tissues from consenting patients undergoing elective cardiac surgery and from rabbits. NA markedly increased human atrial ICaL, maximally by ~ 2.5-fold, with EC75 310 nM. Propranolol (ß1 + ß2-AR antagonist, 0.2 microM) substantially decreased NA (310 nM)-stimulated ICaL, in human and rabbit. Phentolamine (α1 + α2-AR antagonist, 1 microM) also decreased NA-stimulated ICaL. CGP20712A (ß1-AR antagonist, 0.3 microM) and prazosin (α1-AR antagonist, 0.5 microM) each decreased NA-stimulated ICaL in both species. ICI118551 (ß2-AR antagonist, 0.1 microM), in the presence of NA + CGP20712A, had no significant effect on ICaL in human atrial myocytes, but increased it in rabbit. Yohimbine (α2-AR antagonist, 10 microM), with NA + prazosin, had no significant effect on human or rabbit ICaL. Stimulation of atrial ICaL by NA is mediated, based on AR sub-type antagonist responses, mainly by activating ß1- and α1-ARs in both human and rabbit, with a ß2-inhibitory contribution evident in rabbit, and negligible α2 involvement in either species. This improved understanding of AR sub-type contributions to noradrenergic activation of atrial ICaL could help inform future potential optimisation of pharmacological AR-antagonism strategies for inhibiting adrenergic AF.


Subject(s)
Calcium Channels, L-Type , Myocytes, Cardiac , Norepinephrine , Receptors, Adrenergic, alpha , Receptors, Adrenergic, beta , Animals , Humans , Rabbits , Atrial Fibrillation/physiopathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/physiology , Norepinephrine/pharmacology , Norepinephrine/physiology , Prazosin/pharmacology , Receptors, Adrenergic, alpha-2 , Heart Atria/cytology , Receptors, Adrenergic, beta/physiology , Receptors, Adrenergic, alpha/physiology , Adrenergic alpha-Antagonists/pharmacology , Adrenergic beta-Antagonists/pharmacology , Calcium Channels, L-Type/physiology
3.
Heart Rhythm ; 18(7): 1212-1220, 2021 07.
Article in English | MEDLINE | ID: mdl-33737232

ABSTRACT

BACKGROUND: Although atrial fibrillation ablation is increasingly used for rhythm control therapy, antiarrhythmic drugs (AADs) are commonly used, either alone or in combination with ablation. The effectiveness of AADs is highly variable. Previous work from our group suggests that alterations in atrial resting membrane potential (RMP) induced by low Pitx2 expression could explain the variable effect of flecainide. OBJECTIVE: The purpose of this study was to assess whether alterations in atrial/cardiac RMP modify the effectiveness of multiple clinically used AADs. METHODS: The sodium channel blocking effects of propafenone (300 nM, 1 µM), flecainide (1 µM), and dronedarone (5 µM, 10 µM) were measured in human stem cell-derived cardiac myocytes, HEK293 expressing human NaV1.5, primary murine atrial cardiac myocytes, and murine hearts with reduced Pitx2c. RESULTS: A more positive atrial RMP delayed INa recovery, slowed channel inactivation, and decreased peak action potential (AP) upstroke velocity. All 3 AADs displayed enhanced sodium channel block at more positive atrial RMPs. Dronedarone was the most sensitive to changes in atrial RMP. Dronedarone caused greater reductions in AP amplitude and peak AP upstroke velocity at more positive RMPs. Dronedarone evoked greater prolongation of the atrial effective refractory period and postrepolarization refractoriness in murine Langendorff-perfused Pitx2c+/- hearts, which have a more positive RMP compared to wild type. CONCLUSION: Atrial RMP modifies the effectiveness of several clinically used AADs. Dronedarone is more sensitive to changes in atrial RMP than flecainide or propafenone. Identifying and modifying atrial RMP may offer a novel approach to enhancing the effectiveness of AADs or personalizing AAD selection.


Subject(s)
Atrial Fibrillation/metabolism , Dronedarone/therapeutic use , Flecainide/therapeutic use , Heart Atria/metabolism , Membrane Potentials/drug effects , Propafenone/therapeutic use , Sodium/metabolism , Action Potentials/drug effects , Animals , Anti-Arrhythmia Agents/therapeutic use , Atrial Fibrillation/drug therapy , Atrial Fibrillation/physiopathology , Disease Models, Animal , Female , Heart Atria/physiopathology , Male , Mice , Voltage-Gated Sodium Channel Blockers/therapeutic use
4.
J Physiol ; 597(14): 3619-3638, 2019 07.
Article in English | MEDLINE | ID: mdl-31093979

ABSTRACT

KEY POINTS: Early-afterdepolarizations (EADs) are abnormal action potential oscillations and a known cause of cardiac arrhythmias. Ventricular EADs involve reactivation of a Ca2+ current (ICaL ) in its 'window region' voltage range. However, electrical mechanisms of atrial EADs, a potential cause of atrial fibrillation, are poorly understood. Atrial cells were obtained from consenting patients undergoing heart surgery, as well as from rabbits. ICaL was blocked with nifedipine and then a hybrid patch clamp/mathematical-modelling technique, 'dynamic clamping', was used to record action potentials at the same time as injecting an artificial, modifiable, ICaL (ICaL,D-C ). Progressively widening the ICaL,D-C window region produced EADs of various types, dependent on window width. EAD production was strongest upon moving the activation (vs. inactivation) side of the window. EADs were then induced by a different method: increasing ICaL,D-C amplitude and/or K+ channel-blockade (4-aminopyridine). Narrowing of the ICaL,D-C window by ∼10 mV abolished these EADs. Atrial ICaL window narrowing is worthy of further testing as a potential anti-atrial fibrillation drug mechanism. ABSTRACT: Atrial early-afterdepolarizations (EADs) may contribute to atrial fibrillation (AF), perhaps involving reactivation of L-type Ca2+ current (ICaL ) in its window region voltage range. The present study aimed (i) to validate the dynamic clamp technique for modifying the ICaL contribution to atrial action potential (AP) waveform; (ii) to investigate the effects of widening the window ICaL on EAD-propensity; and (iii) to test whether EADs from increased ICaL and AP duration are supressed by narrowing the window ICaL . ICaL and APs were recorded from rabbit and human atrial myocytes by whole-cell-patch clamp. During AP recording, ICaL was inhibited (3 µm nifedipine) and replaced by a dynamic clamp model current, ICaL,D-C (tuned to native ICaL characteristics), computed in real-time (every 50 µs) based on myocyte membrane potential. ICaL,D-C -injection restored the nifedipine-suppressed AP plateau. Widening the window ICaL,D-C , symmetrically by stepwise simultaneous equal shifts of half-voltages (V0.5 ) of ICaL,D-C activation (negatively) and inactivation (positively), generated EADs (single, multiple or preceding repolarization failure) in a window width-dependent manner, as well as AP alternans. A stronger EAD-generating effect resulted from independently shifting activation V0.5 (asymmetrical widening) than inactivation V0.5 ; for example, a 15 mV activation shift produced EADs in nine of 17 (53%) human atrial myocytes vs. 0 of 18 from inactivation shift (P < 0.05). In 11 rabbit atrial myocytes in which EADs were generated either by increasing the conductance of normal window width ICaL,D-C or subsequent 4-aminopyridine (2 mm), window ICaL,D-C narrowing (10 mV) abolished EADs of all types (P < 0.05). The present study validated the dynamic clamp for ICaL , which is novel in atrial cardiomyocytes, and showed that EADs of various types are generated by widening (particularly asymmetrically) the window ICaL , as well as abolished by narrowing it. Window ICaL narrowing is a potential therapeutic mechanism worth pursuing in the search for improved anti-AF drugs.


Subject(s)
Action Potentials/physiology , Calcium/metabolism , Aged , Animals , Atrial Fibrillation/metabolism , Calcium Channels, L-Type/metabolism , Cells, Cultured , Female , Heart Atria/metabolism , Humans , Male , Myocytes, Cardiac/metabolism , Patch-Clamp Techniques/methods , Rabbits
5.
Front Physiol ; 9: 1211, 2018.
Article in English | MEDLINE | ID: mdl-30245635

ABSTRACT

Introduction: The development of improved diagnosis, management, and treatment strategies for human atrial fibrillation (AF) is a significant and important challenge in order to improve quality of life for millions and reduce the substantial social-economic costs of the condition. As a complex condition demonstrating high variability and relation to other cardiac conditions, the study of AF requires approaches from multiple disciplines including single-cell experimental electrophysiology and computational modeling. Models of human atrial cells are less well parameterized than those of the human ventricle or other mammal species, largely due to the inherent challenges in patch clamping human atrial cells. Such challenges include, frequently, unphysiologically depolarized resting potentials and thus injection of a compensatory hyperpolarizing current, as well as detecting certain ion currents which may be disrupted by the cell isolation process. The aim of this study was to develop a laboratory specific model of human atrial electrophysiology which reproduces exactly the conditions of isolated-cell experiments, including testing of multiple experimental interventions. Methods: Formulations for the primary ion currents characterized by isolated-cell experiments in the Workman laboratory were fit directly to voltage-clamp data; the fast sodium-current was parameterized based on experiments relating resting membrane potential to maximal action potential upstroke velocity; compensatory hyperpolarizing current was included as a constant applied current. These formulations were integrated with three independent human atrial cell models to provide a family of novel models. Extrapolated intact-cell models were developed through removal of the hyperpolarizing current and introduction of terminal repolarization potassium currents. Results: The isolated-cell models quantitatively reproduced experimentally measured properties of excitation in both control and pharmacological and dynamic-clamp interventions. Comparison of isolated and intact-cell models highlighted the importance of reproducing this cellular environment when comparing experimental and simulation data. Conclusion: We have developed a laboratory specific model of the human atrial cell which directly reproduces the experimental isolated-cell conditions and captures human atrial excitation properties. The model may be particularly useful for directly relating model to experiment, and offers a complementary tool to the available set of human atrial cell models with specific advantages resulting from the congruent input data source.

6.
Clin Med Insights Cardiol ; 10(Suppl 1): 41-46, 2016.
Article in English | MEDLINE | ID: mdl-27812293

ABSTRACT

Heart failure (HF) causes complex, chronic changes in atrial structure and function, which can cause substantial electrophysiological remodeling and predispose the individual to atrial fibrillation (AF). Pharmacological treatments for preventing AF in patients with HF are limited. Improved understanding of the atrial electrical and ionic/molecular mechanisms that promote AF in these patients could lead to the identification of novel therapeutic targets. Animal models of HF have identified numerous changes in atrial ion currents, intracellular calcium handling, action potential waveform and conduction, as well as expression and signaling of associated proteins. These studies have shown that the pattern of electrophysiological remodeling likely depends on the duration of HF, the underlying cardiac pathology, and the species studied. In atrial myocytes and tissues obtained from patients with HF or left ventricular systolic dysfunction, the data on changes in ion currents and action potentials are largely equivocal, probably owing mainly to difficulties in controlling for the confounding influences of multiple variables, such as patient's age, sex, disease history, and drug treatments, as well as the technical challenges in obtaining such data. In this review, we provide a summary and comparison of the main animal and human electrophysiological studies to date, with the aim of highlighting the consistencies in some of the remodeling patterns, as well as identifying areas of contention and gaps in the knowledge, which warrant further investigation.

7.
PLoS Comput Biol ; 11(1): e1004026, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25611350

ABSTRACT

Rapid atrial arrhythmias such as atrial fibrillation (AF) predispose to ventricular arrhythmias, sudden cardiac death and stroke. Identifying the origin of atrial ectopic activity from the electrocardiogram (ECG) can help to diagnose the early onset of AF in a cost-effective manner. The complex and rapid atrial electrical activity during AF makes it difficult to obtain detailed information on atrial activation using the standard 12-lead ECG alone. Compared to conventional 12-lead ECG, more detailed ECG lead configurations may provide further information about spatio-temporal dynamics of the body surface potential (BSP) during atrial excitation. We apply a recently developed 3D human atrial model to simulate electrical activity during normal sinus rhythm and ectopic pacing. The atrial model is placed into a newly developed torso model which considers the presence of the lungs, liver and spinal cord. A boundary element method is used to compute the BSP resulting from atrial excitation. Elements of the torso mesh corresponding to the locations of the placement of the electrodes in the standard 12-lead and a more detailed 64-lead ECG configuration were selected. The ectopic focal activity was simulated at various origins across all the different regions of the atria. Simulated BSP maps during normal atrial excitation (i.e. sinoatrial node excitation) were compared to those observed experimentally (obtained from the 64-lead ECG system), showing a strong agreement between the evolution in time of the simulated and experimental data in the P-wave morphology of the ECG and dipole evolution. An algorithm to obtain the location of the stimulus from a 64-lead ECG system was developed. The algorithm presented had a success rate of 93%, meaning that it correctly identified the origin of atrial focus in 75/80 simulations, and involved a general approach relevant to any multi-lead ECG system. This represents a significant improvement over previously developed algorithms.


Subject(s)
Algorithms , Atrial Fibrillation/diagnosis , Electrocardiography/methods , Heart Atria/physiopathology , Models, Biological , Atrial Fibrillation/physiopathology , Body Surface Potential Mapping , Computer Simulation , Electrocardiography/instrumentation , Female , Humans , Male , Torso/physiology
8.
Europace ; 16(10): 1524-33, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25085203

ABSTRACT

AIMS: Atrial anti-arrhythmic effects of ß-adrenoceptor antagonists (ß-blockers) may involve both a suppression of pro-arrhythmic effects of catecholamines, and an adaptational electrophysiological response to chronic ß-blocker use; so-called 'pharmacological remodelling'. In human atrium, such remodelling decreases the transient outward (Ito) and inward rectifier (IK1) K(+) currents, and increases the cellular action potential duration (APD) and effective refractory period (ERP). However, the consequences of these changes on mechanisms of genesis and maintenance of atrial fibrillation (AF) are unknown. Using mathematical modelling, we tested the hypothesis that the long-term adaptational decrease in human atrial Ito and IK1 caused by chronic ß-blocker therapy, i.e. independent of acute electrophysiological effects of ß-blockers, in an otherwise un-remodelled atrium, could suppress AF. METHODS AND RESULTS: Contemporarily, biophysically detailed human atrial cell and tissue models were used to investigate effects of the ß-blocker-based pharmacological remodelling. Chronic ß-blockade remodelling prolonged atrial cell APD and ERP. The incidence of small amplitude APD alternans in the CRN model was reduced. At the 1D tissue level, ß-blocker remodelling decreased the maximum pacing rate at which APs could be conducted. At the three-dimensional organ level, ß-blocker remodelling reduced the life span of re-entry scroll waves. CONCLUSION: This study improves our understanding of the electrophysiological mechanisms of AF suppression by chronic ß-blocker therapy. Atrial fibrillation suppression may involve a reduced propensity for maintenance of re-entrant excitation waves, as a consequence of increased APD and ERP.


Subject(s)
Adrenergic beta-Antagonists/pharmacology , Atrial Fibrillation/drug therapy , Atrial Remodeling , Computer Simulation , Action Potentials/drug effects , Atrial Fibrillation/metabolism , Atrial Fibrillation/physiopathology , Humans , Ion Channels/metabolism
9.
Cardiovasc Res ; 99(1): 215-24, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23568957

ABSTRACT

AIMS: Atrial fibrillation (AF) is increased in patients with heart failure resulting from myocardial infarction (MI). We aimed to determine the effects of chronic ventricular MI in rabbits on the susceptibility to AF, and underlying atrial electrophysiological and Ca(2+)-handling mechanisms. METHODS AND RESULTS: In Langendorff-perfused rabbit hearts, under ß-adrenergic stimulation with isoproterenol (ISO; 1 µM), 8 weeks MI decreased AF threshold, indicating increased AF susceptibility. This was associated with increased atrial action potential duration (APD)-alternans at 90% repolarization, by 147%, and no significant change in the mean APD or atrial global conduction velocity (CV; n = 6-13 non-MI hearts, 5-12 MI). In atrial isolated myocytes, also under ß-stimulation, L-type Ca(2+) current (I(CaL)) density and intracellular Ca(2+)-transient amplitude were decreased by MI, by 35 and 41%, respectively, and the frequency of spontaneous depolarizations (SDs) was substantially increased. MI increased atrial myocyte size and capacity, and markedly decreased transverse-tubule density. In non-MI hearts perfused with ISO, the I(CaL)-blocker nifedipine, at a concentration (0.02 µM) causing an equivalent I(CaL) reduction (35%) to that from the MI, did not affect AF susceptibility, and decreased APD. CONCLUSION: Chronic MI in rabbits remodels atrial structure, electrophysiology, and intracellular Ca(2+) handling. Increased susceptibility to AF by MI, under ß-adrenergic stimulation, may result from associated production of atrial APD alternans and SDs, since steady-state APD and global CV were unchanged under these conditions, and may be unrelated to the associated reduction in whole-cell ICaL. Future studies may clarify potential contributions of local conduction changes, and cellular and subcellular mechanisms of alternans, to the increased AF susceptibility.


Subject(s)
Atrial Fibrillation/etiology , Heart Conduction System/physiopathology , Myocardial Infarction/complications , Myocytes, Cardiac/metabolism , Action Potentials , Adrenergic beta-Agonists/pharmacology , Animals , Atrial Fibrillation/metabolism , Atrial Fibrillation/physiopathology , Calcium/metabolism , Calcium Channel Blockers/pharmacology , Calcium Signaling , Cardiomegaly/etiology , Cardiomegaly/metabolism , Cardiomegaly/physiopathology , Chronic Disease , Disease Models, Animal , Heart Atria/metabolism , Heart Atria/physiopathology , Heart Conduction System/drug effects , Heart Conduction System/metabolism , Heart Conduction System/pathology , Male , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Perfusion , Rabbits , Time Factors , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/physiopathology
10.
J Atr Fibrillation ; 4(6): 495, 2012.
Article in English | MEDLINE | ID: mdl-28496736

ABSTRACT

This review focuses on the (mal)adaptive processes in atrial excitation-contraction coupling occurring in patients with chronic atrial fibrillation. Cellular remodeling includes shortening of the atrial action potential duration and effective refractory period, depressed intracellular Ca2+ transient, and reduced myocyte contractility. Here we summarize the current knowledge of the ionic bases underlying these changes. Understanding the molecular mechanisms of excitation-contraction-coupling remodeling in the fibrillating human atria is important to identify new potential targets for AF therapy.

11.
Pflugers Arch ; 463(4): 537-48, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22160437

ABSTRACT

Chronic ß-adrenoceptor antagonist (ß-blocker) treatment in patients is associated with a potentially anti-arrhythmic prolongation of the atrial action potential duration (APD), which may involve remodelling of repolarising K(+) currents. The aim of this study was to investigate the effects of chronic ß-blockade on transient outward, sustained and inward rectifier K(+) currents (I(TO), I(KSUS) and I(K1)) in human atrial myocytes and on the expression of underlying ion channel subunits. Ion currents were recorded from human right atrial isolated myocytes using the whole-cell-patch clamp technique. Tissue mRNA and protein levels were measured using real time RT-PCR and Western blotting. Chronic ß-blockade was associated with a 41% reduction in I(TO) density: 9.3 ± 0.8 (30 myocytes, 15 patients) vs 15.7 ± 1.1 pA/pF (32, 14), p < 0.05; without affecting its voltage-, time- or rate dependence. I(K1) was reduced by 34% at -120 mV (p < 0.05). Neither I(KSUS), nor its increase by acute ß-stimulation with isoprenaline, was affected by chronic ß-blockade. Mathematical modelling suggested that the combination of I(TO)- and I(K1)-decrease could result in a 28% increase in APD(90). Chronic ß-blockade did not alter mRNA or protein expression of the I(TO) pore-forming subunit, Kv4.3, or mRNA expression of the accessory subunits KChIP2, KChAP, Kvß1, Kvß2 or frequenin. There was no reduction in mRNA expression of Kir2.1 or TWIK to account for the reduction in I(K1). A reduction in atrial I(TO) and I(K1) associated with chronic ß-blocker treatment in patients may contribute to the associated action potential prolongation, and this cannot be explained by a reduction in expression of associated ion channel subunits.


Subject(s)
Adrenergic beta-Antagonists/pharmacology , Heart Atria/metabolism , Ion Channels/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Potassium Channels/drug effects , Potassium Channels/metabolism , Action Potentials/drug effects , Aged , Anti-Arrhythmia Agents/pharmacology , Atrial Fibrillation/drug therapy , Atrial Fibrillation/metabolism , Female , Heart Atria/drug effects , Humans , Ion Channels/metabolism , Male , Middle Aged , Myocytes, Cardiac/physiology , Patch-Clamp Techniques , Potassium Channels/genetics , Receptors, Adrenergic, beta/drug effects , Receptors, Adrenergic, beta/physiology
12.
Circ Res ; 109(9): 1055-66, 2011 Oct 14.
Article in English | MEDLINE | ID: mdl-21921263

ABSTRACT

RATIONALE: Understanding atrial fibrillation (AF) requires integrated understanding of ionic currents and Ca2+ transport in remodeled human atrium, but appropriate models are limited. OBJECTIVE: To study AF, we developed a new human atrial action potential (AP) model, derived from atrial experimental results and our human ventricular myocyte model. METHODS AND RESULTS: Atria versus ventricles have lower I(K1), resulting in more depolarized resting membrane potential (≈7 mV). We used higher I(to,fast) density in atrium, removed I(to,slow), and included an atrial-specific I(Kur). I(NCX) and I(NaK) densities were reduced in atrial versus ventricular myocytes according to experimental results. SERCA function was altered to reproduce human atrial myocyte Ca2+ transients. To simulate chronic AF, we reduced I(CaL), I(to), I(Kur) and SERCA, and increased I(K1),I(Ks) and I(NCX). We also investigated the link between Kv1.5 channelopathy, [Ca2+]i, and AF. The sinus rhythm model showed a typical human atrial AP morphology. Consistent with experiments, the model showed shorter APs and reduced AP duration shortening at increasing pacing frequencies in AF or when I(CaL) was partially blocked, suggesting a crucial role of Ca2+ and Na+ in this effect. This also explained blunted Ca2+ transient and rate-adaptation of [Ca2+]i and [Na+]i in chronic AF. Moreover, increasing [Na+]i and altered I(NaK) and I(NCX) causes rate-dependent atrial AP shortening. Blocking I(Kur) to mimic Kv1.5 loss-of-function increased [Ca2+]i and caused early afterdepolarizations under adrenergic stress, as observed experimentally. CONCLUSIONS: Our study provides a novel tool and insights into ionic bases of atrioventricular AP differences, and shows how Na+ and Ca2+ homeostases critically mediate abnormal repolarization in AF.


Subject(s)
Action Potentials/physiology , Atrial Fibrillation/physiopathology , Calcium/metabolism , Heart Atria/physiopathology , Models, Cardiovascular , Sinoatrial Node/physiopathology , Atrial Fibrillation/metabolism , Calcium Channels, L-Type/physiology , Chronic Disease , Heart Atria/metabolism , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Homeostasis/physiology , Humans , Kv1.5 Potassium Channel/physiology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Sodium/metabolism
13.
Cardiovasc Res ; 89(4): 843-51, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21076156

ABSTRACT

AIMS: The goal was to terminate atrial fibrillation (AF) by targeting atrioventricular differences in ionic properties. METHODS AND RESULTS: Optical mapping was used to record electrical activity during carbachol (0.25-0.5 µM)-induced AF in pig hearts. The atrial-specific current, I(Kur), was blocked with 100 µM 4-aminopyridine (4-AP) or with 0.5 µM DPO-1. Hearts in AF and ventricular fibrillation (VF) were also subjected to increasing levels of extracellular K(+) ([K(+)](o): 6-12 mM), compared with controls (4 mM). We hypothesized that due to the more negative steady-state half inactivation voltage for the atrial Na(+) current, I(Na), compared with the ventricle, AF would terminate before VF in hyperkalaemia. Mathematical models were used to interpret experimental findings. The I(Kur) block did not terminate AF in a majority of experiments (6/9 with 4-AP and 3/4 with DPO-1). AF terminated in mild hyperkalaemia ([K(+)](o) ≤ 10.0 mM; N = 8). In contrast, only two of five VF episodes terminated at the maximum ([K(+)](o): 12 mM [K(+)](o)). The I(Kur) block did not terminate a simulated rotor in cholinergic AF because its contribution to repolarization was dwarfed by the large magnitude of the acetylcholine-activated K(+) current (I(K,ACh)). Simulations showed that the lower availability of the atrial Na(+) current at depolarized potentials, and a smaller atrial tissue size compared with the ventricle, could partly explain the earlier termination of AF compared with VF during hyperkalaemia. CONCLUSION: I(Kur) is an ineffective anti-arrhythmic drug target in cholinergic AF. Manipulating Na(+) current 'availability' might represent a viable anti-arrhythmic strategy in AF.


Subject(s)
Atrial Fibrillation/drug therapy , Potassium Channel Blockers/therapeutic use , 4-Aminopyridine/pharmacology , Action Potentials/drug effects , Animals , Computer Simulation , Hyperkalemia/physiopathology , Male , Phosphines/pharmacology , Potassium/metabolism , Swine
15.
Naunyn Schmiedebergs Arch Pharmacol ; 381(3): 235-49, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19960186

ABSTRACT

Atrial fibrillation (AF) is the most common cardiac arrhythmia, and it causes substantial mortality. The autonomic nervous system, and particularly the adrenergic/cholinergic balance, has a profound influence on the occurrence of AF. Adrenergic stimulation from catecholamines can cause AF in patients. In human atrium, catecholamines can affect each of the electrophysiological mechanisms of AF initiation and/or maintenance. Catecholamines may produce membrane potential oscillations characteristic of afterdepolarisations, by increasing Ca(2+) current, [Ca(2+)](i) and consequent Na(+)-Ca(2+) exchange, and may also enhance automaticity. Catecholamines might affect reentry, by altering excitability or conduction, rather than action potential terminal repolarisation or refractory period. However, which arrhythmia mechanisms predominate is unclear, and likely depends on cardiac pathology and adrenergic tone. Heart failure (HF), a major cause of AF, causes adrenergic activation and adaptational changes, remodelling, of atrial electrophysiology, Ca(2+) homeostasis, and adrenergic responses. Chronic AF also remodels these, but differently to HF. Myocardial infarction and AF cause neural remodelling that also may promote AF. beta-Adrenoceptor antagonists (beta-blockers) are used in the treatment of AF, mainly to control the ventricular rate, by slowing atrioventricular conduction. beta-Blockers also reduce the incidence of AF, particularly in HF or after cardiac surgery, when adrenergic tone is high. Furthermore, the chronic treatment of patients with beta-blockers remodels the atria, with a potentially antiarrhythmic increase in the refractory period. Therefore, the suppression of AF by beta-blocker treatment may involve an attenuation of arrhythmic activity that is caused by increased [Ca(2+)](i), coupled with effects of adaptation to the treatment. An improved understanding of the involvement of the adrenergic system and its control in basic mechanisms of AF under differing cardiac pathologies might lead to better treatments.


Subject(s)
Adrenergic beta-Antagonists/therapeutic use , Atrial Fibrillation/drug therapy , Catecholamines/metabolism , Receptors, Adrenergic/metabolism , Action Potentials/drug effects , Adrenergic beta-Antagonists/administration & dosage , Adrenergic beta-Antagonists/pharmacology , Animals , Atrial Fibrillation/metabolism , Atrial Fibrillation/physiopathology , Calcium Signaling/drug effects , Humans , Species Specificity
18.
Heart Rhythm ; 6(4): 445-51, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19324301

ABSTRACT

BACKGROUND: Left ventricular systolic dysfunction (LVSD) is a risk factor for atrial fibrillation (AF), but the atrial cellular electrophysiological mechanisms in humans are unclear. OBJECTIVE: This study sought to investigate whether LVSD in patients who are in sinus rhythm (SR) is associated with atrial cellular electrophysiological changes that could predispose to AF. METHODS: Right atrial myocytes were obtained from 214 consenting patients in SR who were undergoing cardiac surgery. Action potentials or ion currents were measured using the whole-cell-patch clamp technique. RESULTS: The presence of moderate or severe LVSD was associated with a shortened atrial cellular effective refractory period (ERP) (209 +/- 8 ms; 52 cells, 18 patients vs 233 +/- 7 ms; 134 cells, 49 patients; P <0.05); confirmed by multiple linear regression analysis. The left ventricular ejection fraction (LVEF) was markedly lower in patients with moderate or severe LVSD (36% +/- 4%, n = 15) than in those without LVSD (62% +/- 2%, n = 31; P <0.05). In cells from patients with LVEF 45%, by 24% and 18%, respectively. The LVEF and ERP were positively correlated (r = 0.65, P <0.05). The L-type calcium ion current, inward rectifier potassium ion current, and sustained outward ion current were unaffected by LVSD. The transient outward potassium ion current was decreased by 34%, with a positive shift in its activation voltage, and no change in its decay kinetics. CONCLUSION: LVSD in patients in SR is independently associated with a shortening of the atrial cellular ERP, which may be expected to contribute to a predisposition to AF.


Subject(s)
Atrial Fibrillation/etiology , Atrial Fibrillation/physiopathology , Myocytes, Cardiac/physiology , Ventricular Dysfunction, Left/complications , Ventricular Dysfunction, Left/physiopathology , Action Potentials , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Calcium Channel Blockers/therapeutic use , Chi-Square Distribution , Female , Heart Atria/cytology , Heart Atria/physiopathology , Humans , Linear Models , Male , Middle Aged , Patch-Clamp Techniques , Potassium Channels/metabolism , Risk Factors , Ventricular Dysfunction, Left/drug therapy , Ventricular Dysfunction, Left/surgery
19.
Heart Rhythm ; 5(6 Suppl): S1-6, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18456193

ABSTRACT

Atrial fibrillation (AF) causes substantial morbidity and mortality. It may be triggered and sustained by either reentrant or nonreentrant electrical activity. Human atrial cellular refractory period is shortened in chronic AF, likely aiding reentry. The ionic and molecular mechanisms are not fully understood and may include increased inward rectifier K(+) current and altered Ca(2+) handling. Heart failure, a major cause of AF, may involve arrhythmogenic atrial electrical remodeling, but the pattern is unclear in humans. Beta-blocker therapy prolongs atrial cell refractory period; a potentially antiarrhythmic influence, but the ionic and molecular mechanisms are unclear. The search for drugs to suppress AF without causing ventricular arrhythmias has been aided by basic studies of cellular mechanisms of AF. It remains to be seen whether such drugs will improve patient treatment.


Subject(s)
Atrial Fibrillation/metabolism , Calcium/metabolism , Heart Failure/metabolism , Adrenergic beta-Antagonists/pharmacology , Adrenergic beta-Antagonists/therapeutic use , Atrial Fibrillation/drug therapy , Atrial Function , Electrophysiological Phenomena , Heart Atria/cytology , Humans , Potassium Channels, Inwardly Rectifying/metabolism
20.
J Mol Cell Cardiol ; 42(1): 54-62, 2007 Jan.
Article in English | MEDLINE | ID: mdl-16989857

ABSTRACT

5-Hydroxytryptamine (5-HT) is proarrhythmic in atrial cells from patients in sinus rhythm (SR) via activation of 5-HT(4) receptors, but its effects in atrial cells from patients with atrial fibrillation (AF) are unknown. The whole-cell perforated patch-clamp technique was used to record L-type Ca(2+) current (I(CaL)), action potential duration (APD) and arrhythmic activity at 37 degrees C in enzymatically isolated atrial cells obtained from patients undergoing cardiac surgery, in SR or with chronic AF. In the AF group, 5-HT (10microM) produced an increase in I(CaL) of 115+/-21% above control (n=10 cells, 6 patients) that was significantly smaller than that in the SR group (232+/-33%; p<0.05; n=27 cells, 12 patients). Subsequent co-application of isoproterenol (1microM) caused a further increase in I(CaL) in the AF group (by 256+/-94%) that was greater than that in the SR group (22+/-6%; p<0.05). The APD at 50% repolarisation (APD(50)) was prolonged by 14+/-3ms by 5-HT in the AF group (n=37 cells, 14 patients). This was less than that in the SR group (27+/-4ms; p<0.05; n=58 cells, 24 patients). Arrhythmic activity in response to 5-HT was observed in 22% of cells in the SR group, but none was observed in the AF group (p<0.05). Atrial fibrillation was associated with reduced effects of 5-HT, but not of isoproterenol, on I(CaL) in human atrial cells. This reduced effect on I(CaL) was associated with a reduced APD(50) and arrhythmic activity with 5-HT. Thus, the potentially arrhythmogenic influence of 5-HT may be suppressed in AF-remodelled human atrium.


Subject(s)
Atrial Fibrillation/physiopathology , Heart/drug effects , Serotonin/pharmacology , Action Potentials/drug effects , Adrenergic beta-Antagonists/pharmacology , Aged , Atrial Fibrillation/pathology , Calcium Channels, L-Type/drug effects , Electrophysiology , Female , Heart Atria/drug effects , Heart Atria/pathology , Heart Atria/physiopathology , Humans , In Vitro Techniques , Isoproterenol/pharmacology , Male , Middle Aged , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/physiology , Patch-Clamp Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...