Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 109(8): 3451-61, 2007 Apr 15.
Article in English | MEDLINE | ID: mdl-17170124

ABSTRACT

CCAAT enhancer-binding protein (CEBP) transcription factors play pivotal roles in proliferation and differentiation, including suppression of myeloid leukemogenesis. Mutations of CEBPA are found in a subset of acute myeloid leukemia (AML) and in some cases of familial AML. Here, using cytogenetics, fluorescence in situ hybridization (FISH), and molecular cloning, we show that 5 CEBP gene family members are targeted by recurrent IGH chromosomal translocations in BCP-ALL. Ten patients with t(8;14)(q11;q32) involved CEBPD on chromosome 8, and 9 patients with t(14;19)(q32;q13) involved CEBPA, while a further patient involved CEBPG, located 71 kb telomeric of CEBPA in chromosome band 19q13; 4 patients with inv(14)(q11q32)/t(14;14)(q11;q32) involved CEBPE and 3 patients with t(14;20)(q32;q13) involved CEBPB. In 16 patients the translocation breakpoints were cloned using long-distance inverse-polymerase chain reaction (LDI-PCR). With the exception of CEBPD breakpoints, which were scattered within a 43-kb region centromeric of CEBPD, translocation breakpoints were clustered immediately 5' or 3' of the involved CEBP gene. Except in 1 patient with t(14;14)(q11;q32), the involved CEBP genes retained germ-line sequences. Quantitative reverse transcription (RT)-PCR showed overexpression of the translocated CEBP gene. Our findings implicate the CEBP gene family as novel oncogenes in BCP-ALL, and suggest opposing functions of CEBP dysregulation in myeloid and lymphoid leukemogenesis.


Subject(s)
Burkitt Lymphoma/genetics , CCAAT-Enhancer-Binding Proteins/genetics , Chromosomes, Human/genetics , Immunoglobulin Heavy Chains/genetics , Multigene Family/genetics , Oncogenes/genetics , Translocation, Genetic , Centromere/genetics , Humans , In Situ Hybridization, Fluorescence , Polymerase Chain Reaction , Telomere/genetics
2.
Proc Natl Acad Sci U S A ; 103(21): 8167-72, 2006 May 23.
Article in English | MEDLINE | ID: mdl-16702559

ABSTRACT

We have previously identified a unique subtype of acute lymphoblastic leukemia (ALL) associated with a poor outcome and characterized by intrachromosomal amplification of chromosome 21 including the RUNX1 gene (iAMP21). In this study, array-based comparative genomic hybridization (aCGH) (n = 10) detected a common region of amplification (CRA) between 33.192 and 39.796 Mb and a common region of deletion (CRD) between 43.7 and 47 Mb in 100% and 70% of iAMP21 patients, respectively. High-resolution genotypic analysis (n = 3) identified allelic imbalances in the CRA. Supervised gene expression analysis showed a distinct signature for eight patients with iAMP21, with 10% of overexpressed genes located within the CRA. The mean expression of these genes was significantly higher in iAMP21 when compared to other ALL samples (n = 45). Although genomic copy number correlated with overall gene expression levels within areas of loss or gain, there was considerable individual variation. A unique subset of differentially expressed genes, outside the CRA and CRD, were identified when gene expression signatures of iAMP21 were compared to ALL samples with ETV6-RUNX1 fusion (n = 21) or high hyperdiploidy with additional chromosomes 21 (n = 23). From this analysis, LGMN was shown to be overexpressed in patients with iAMP21 (P = 0.0012). Genomic and expression data has further characterized this ALL subtype, demonstrating high levels of 21q instability in these patients leading to proposals for mechanisms underlying this clinical phenotype and plausible alternative treatments.


Subject(s)
Chromosomes, Human, Pair 21 , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Alleles , Chromosome Aberrations , Chromosomes, Artificial, Bacterial , Gene Expression Profiling , Genome , Genome, Human , Genotype , Humans , In Situ Hybridization, Fluorescence , Oligonucleotide Array Sequence Analysis , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...