Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 26(13): 2947-2953, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-31850549

ABSTRACT

PEG is the gold standard polymer for pharmaceutical applications, however it lacks degradability. Degradation under physiologically relevant pH as present in endolysosomes, cancerous and inflammatory tissues is crucial for many areas. The authors present anionic ring-opening copolymerization of ethylene oxide with 3,4-epoxy-1-butene (EPB) and subsequent modification to introduce acid-degradable vinyl ether groups as well as methacrylate (MA) units, enabling radical cross-linking. Copolymers with different molar ratios of EPB, molecular weights (Mn ) up to 10 000 g mol-1 and narrow dispersities (D<1.05) were prepared. Both the P(EG-co-isoEPB)MA copolymer and the hydrogels showed pH-dependent, rapid hydrolysis at pH 5-6 and long-term storage stability at neutral pH (pH 7.4). By designing the degree of polymerization and content of degradable vinyl ether groups, the release time of an entrapped protein OVA-Alexa488 can be tailored from a few hours to several days (hydrolysis half-life time t1/2 at pH 5: 13 h to 51 h).


Subject(s)
Biocompatible Materials/chemistry , Hydrogels/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Methacrylates/chemistry , Polyethylene Glycols/chemistry , Polymerization , Proteins , Vinyl Compounds
2.
Methods Mol Biol ; 2000: 235-245, 2019.
Article in English | MEDLINE | ID: mdl-31148019

ABSTRACT

Surface modification of nanocarriers offers the possibility of targeted drug delivery, which is of major interest in modern pharmaceutical science. Click-chemistry affords an easy and fast way to modify the surface with targeting structures under mild reaction conditions. Here we describe our current method for the post-preparational surface modification of multifunctional sterically stabilized (stealth) liposomes via copper-catalyzed azide-alkyne cycloaddition (CuAAC) and inverse electron demand Diels-Alder norbornene-tetrazine cycloaddition (IEDDA). We emphasize the use of these in a one-pot orthogonal reaction for deep investigation on stability and targeting of nanocarriers. As the production of clickable amphiphilic polymers is a limiting factor in most cases, we also describe our nanocarrier preparation technique called dual centrifugation, which enables the formulation of liposomes on a single-digit milligram scale of total lipid mass.


Subject(s)
Antineoplastic Agents/administration & dosage , Carbon , Drug Delivery Systems/methods , Nanoparticles/chemistry , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Click Chemistry , Humans , Neoplasms/drug therapy
3.
Biomacromolecules ; 19(7): 2506-2516, 2018 07 09.
Article in English | MEDLINE | ID: mdl-29660280

ABSTRACT

Multifunctional and highly biocompatible polyether structures play a key role in shielding liposomes from degradation in the bloodstream, providing also multiple functional groups for further attachment of targeting moieties. In this work hyperbranched polyglycerol ( hbPG) bearing lipids with long alkyl chain anchor are evaluated with respect to steric stabilization of liposomes. The branched polyether lipids possess a hydrophobic bis(hexadecyl)glycerol membrane anchor for the liposomal membrane. hbPG was chosen as a multifunctional alternative to PEG, enabling the eventual linkage of multiple targeting vectors. Different hbPG lipids ( Mn = 2900 and 5200 g mol-1) were examined. A linear bis(hexadecyl)glycerol-PEG lipid ( Mn = 3000 g mol-1) was investigated as well, comparing hbPG and PEG with respect to shielding properties. Radiolabeling of the polymers was carried out using 1-azido-2-(2-(2-[18F]fluoroethoxy)ethoxy)ethane ([18F]F-TEG-N)3 via copper-catalyzed alkyne-azide cycloaddition with excellent radiochemical yields exceeding 95%. Liposomes were prepared by the thin-film hydration method followed by repeated extrusion. Use of a custom automatic extrusion device gave access to reproducible sizes of the liposomes (hydrodynamic radius of 60-94 nm). The in vivo fate of the bis(hexadecyl)glycerol polyethers and their corresponding assembled liposome structures were evaluated via noninvasive small animal positron emission tomography (PET) imaging and biodistribution studies (1 h after injection and 4 h after injection) in mice. Whereas the main uptake of the nonliposomal polyether lipids was observed in the kidneys and in the bladder after 1 h due to rapid renal clearance, in contrast, the corresponding liposomes showed uptake in the blood pool as well as in organs with good blood supply, that is, heart and lung over the whole observation period of 4 h. The in vivo behavior of all three liposomal formulations was comparable, albeit with remarkable differences in splenic uptake. Overall, liposomes shielded by the branched polyglycerol lipids show a favorable biodistribution with greatly prolonged blood circulation times, rendering them promising novel nanovesicles for drug transport and targeting.


Subject(s)
Ethers/chemistry , Lipids/chemistry , Liposomes/chemistry , Positron-Emission Tomography/methods , Animals , Fluorine Radioisotopes , Glycerol/chemistry , Liposomes/pharmacokinetics , Male , Mice , Mice, Inbred C57BL , Polyethylene Glycols/chemistry , Polymers/chemistry , Radiopharmaceuticals , Tissue Distribution
4.
Chemistry ; 22(33): 11578-82, 2016 Aug 08.
Article in English | MEDLINE | ID: mdl-27403892

ABSTRACT

Synthetic access to multiple surface decorations are a bottleneck in the development of liposomes for receptor mediated targeting. This opens a complex multiparameter space, exploration of which is severely limited in terms of sample numbers and turnaround times. Here, we unlock this technological barrier by a combination of a milligram-scale liposome formulation using dual centrifugation and orthogonal click chemistry on the liposomal surface. Application of these techniques to conceptually new amphiphilic compounds, which feature norbornene and alkyne groups at the apex of sterically stabilizing, hyperbranched polyglycerol moieties, revealed a particular influence of the membrane anchor of functional amphiphiles. Folic acid residues clicked to cholesterol-based amphiphiles were inefficient in folate-mediated cell targeting, while dialkyl-anchored amphiphiles remained stable in the liposomal membrane and imparted efficient targeting properties. These findings are of specific importance considering the popularity of cholesterol as a lipophilic anchor.


Subject(s)
Cholesterol/chemistry , Folic Acid/chemistry , Glycerol/chemistry , Lipids/chemistry , Liposomes/chemistry , Polymers/chemistry , Cholesterol/blood , Click Chemistry , Humans
5.
Macromol Rapid Commun ; 37(9): 775-80, 2016 May.
Article in English | MEDLINE | ID: mdl-27000789

ABSTRACT

Poly ((ethylene oxide)-b-(propylene oxide)-b-(ethylene oxide)) triblock copolymers commonly known as poloxamers or Pluronics constitute an important class of nonionic, biocompatible surfactants. Here, a method is reported to incorporate two acid-labile acetal moieties in the backbone of poloxamers to generate acid-cleavable nonionic surfactants. Poly(propylene oxide) is functionalized by means of an acetate-protected vinyl ether to introduce acetal units. Three cleavable PEO-PPO-PEO triblock copolymers (Mn,total = 6600, 8000, 9150 g·mol(-1) ; Mn,PEO = 2200, 3600, 4750 g·mol(-1) ) have been synthesized using anionic ring-opening polymerization. The amphiphilic copolymers exhibit narrow molecular weight distributions (Ð = 1.06-1.08). Surface tension measurements reveal surface-active behavior in aqueous solution comparable to established noncleavable poloxamers. Complete hydrolysis of the labile junctions after acidic treatment is verified by size exclusion chromatography. The block copolymers have been employed as surfactants in a miniemulsion polymerization to generate polystyrene (PS) nanoparticles with mean diameters of ≈200 nm and narrow size distribution, as determined by dynamic light scattering and scanning electron microscopy. Acid-triggered precipitation facilitates removal of surfactant fragments from the nanoparticles, which simplifies purification and enables nanoparticle precipitation "on demand."


Subject(s)
Biodegradable Plastics/chemistry , Biodegradable Plastics/chemical synthesis , Polyethylene Glycols/chemistry , Polyethylene Glycols/chemical synthesis , Hydrolysis , Surface Tension
6.
Chem Rev ; 116(4): 2170-243, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26713458

ABSTRACT

The review summarizes current trends and developments in the polymerization of alkylene oxides in the last two decades since 1995, with a particular focus on the most important epoxide monomers ethylene oxide (EO), propylene oxide (PO), and butylene oxide (BO). Classical synthetic pathways, i.e., anionic polymerization, coordination polymerization, and cationic polymerization of epoxides (oxiranes), are briefly reviewed. The main focus of the review lies on more recent and in some cases metal-free methods for epoxide polymerization, i.e., the activated monomer strategy, the use of organocatalysts, such as N-heterocyclic carbenes (NHCs) and N-heterocyclic olefins (NHOs) as well as phosphazene bases. In addition, the commercially relevant double-metal cyanide (DMC) catalyst systems are discussed. Besides the synthetic progress, new types of multifunctional linear PEG (mf-PEG) and PPO structures accessible by copolymerization of EO or PO with functional epoxide comonomers are presented as well as complex branched, hyperbranched, and dendrimer like polyethers. Amphiphilic block copolymers based on PEO and PPO (Poloxamers and Pluronics) and advances in the area of PEGylation as the most important bioconjugation strategy are also summarized. With the ever growing toolbox for epoxide polymerization, a "polyether universe" may be envisaged that in its structural diversity parallels the immense variety of structural options available for polymers based on vinyl monomers with a purely carbon-based backbone.


Subject(s)
Alkynes/chemical synthesis , Epoxy Compounds/chemical synthesis , Ethylene Oxide/chemical synthesis , Oxides/chemical synthesis , Polymers/chemical synthesis , Alkynes/chemistry , Epoxy Compounds/chemistry , Ethylene Oxide/chemistry , Molecular Structure , Oxides/chemistry , Polymerization , Polymers/chemistry
7.
ACS Macro Lett ; 5(12): 1357-1363, 2016 Dec 20.
Article in English | MEDLINE | ID: mdl-35651218

ABSTRACT

Polyethylene glycol (PEG) has been used for decades to improve the pharmacokinetic properties of protein drugs, and several PEG-protein conjugates are approved by the FDA. However, the nondegradability of PEG restricts its use to a limiting molecular weight to permit renal excretion. In this work, we introduce a simple strategy to overcome the nondegradability of PEG by incorporating multiple pH-sensitive vinyl ether moieties into the polyether backbone. Copolymerization of 3,4-epoxy-1-butene (EPB) with ethylene oxide via anionic ring-opening polymerization (AROP) provides access to allyl moieties that can be isomerized to pH-cleavable propenyl units (isoEPB). Well-defined P(EPB-co-EG) copolymers (D = 1.05-1.11) with EPB contents of ∼4 mol% were synthesized in a molecular weight range of 3000 to 10000 g mol-1. 1H NMR kinetic studies served to investigate acidic hydrolysis in a pH range of 4.4 to 5.4 and even allowed to distinguish between the hydrolysis rates of (E)- and (Z)-isoEPB units, demonstrating faster hydrolysis of the (Z)-isomer. SEC analysis of degradation products revealed moderate dispersities D of 1.6 to 1.8 and consistent average molecular weights Mn of ∼1000 g mol-1. The presence of a defined hydroxyl end group permits attachment to other functional molecules. The novel pH-degradable PEGs combine various desirable properties such as excellent long-term storage stability and cleavage in a physiologically relevant pH-range that render them promising candidates for biomedical application.

SELECTION OF CITATIONS
SEARCH DETAIL
...