Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 23(14): 4162-5, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23731946

ABSTRACT

In this study we present the design, synthesis and biological evaluation of a small, first-generation library of small molecule aromatic amides based on the arylopeptoid skeleton. The compounds were efficiently synthesized using a highly convenient submonomer solid-phase methodology which potentially allows for access to great product diversity. The synthesized compounds were tested for their ability to activate peroxisome proliferator-activated receptors (PPARs) and they all acted as PPARγ agonists in the µM range spanning from 2.5- to 14.7-fold activation of the receptor. This is the first discovery of bioactive molecules based on the arylopeptoid architecture.


Subject(s)
PPAR gamma/agonists , Peptoids/chemistry , Amides/chemical synthesis , Amides/chemistry , Amides/metabolism , Drug Evaluation, Preclinical , Humans , PPAR gamma/metabolism , Protein Binding
2.
Biopolymers ; 94(2): 161-82, 2010.
Article in English | MEDLINE | ID: mdl-20225304

ABSTRACT

A huge unleashed potential lies hidden in the large and diverse pool of encoded and particularly nonencoded chiral alpha-, beta-, and gamma-amino acids available today. Although these have been extensively exploited in peptide science, the community of organic chemistry has only used this source of diversity in a quite focused and targeted manner. The properties and behavior of peptides as functional molecules in biology are well documented and based on the ability of peptides to adapt a range of discrete conformers at a minimal entropic penalty and therefore ideally fitting their endogenous targets. The development of new organic reactions and chemistries that in a general and quantitative way transform peptides into new functional molecules, preferably on solid support, is a source of completely new classes of molecules with important and advantageous functional properties. The peptide diversity and the ability to perform chemistry on solid support add tremendously to the combinatorial scope of such reactions in pharmaceutical and materials screening scenario. In recent years, the need for "click" reactions to shape complex molecular architecture has been realized mainly with a basis in the world of peptides and DNA, and in polymer chemistry where connection of highly functionalized biologically active substances or property bearing fragments are assembled as molecular LEGO using quantitative and orthogonal click chemistries. In this article, three such new reactions originating in the Carlsberg Laboratory over the last decade taking advantage of organic transformations in the peptide framework is presented. Initially, the click reaction between azide and terminal alkynes catalyzed by Cu(1) (CuAAC-reaction) is described. This CuAAC "click" reaction was observed first at Carlsberg Laboratory in reactions of azido acid chlorides with alkynes on solid support. Second, the Electrophilic Aromatic Substitution Cyclization-Intramolecular Click-Cascade (EASCy-ICC) reaction will be presented. This quantitative stereo-selective cascade reaction provides a highly diverse set of interesting novel scaffolds from peptides. Finally, we describe the preparation of solid phase peptide phosphine- and carbene-based green catalysts (organozymes), which upon complex formation with transition metal perform with high turnovers under aqueous conditions. These catalysts thrive from the peptide folding and diversity, while phosphines and carbenes in the backbone provide for bidental complex formation with transition metals in a format providing an excellent entry into combinatorial catalyst chemistry.


Subject(s)
Models, Molecular , Organic Chemicals , Peptides/chemistry , Caspase 8/chemistry , Methane/analogs & derivatives , Methane/chemistry , Molecular Structure , Organic Chemicals/chemistry , Peptides/classification
3.
Org Biomol Chem ; 3(21): 3966-70, 2005 Nov 07.
Article in English | MEDLINE | ID: mdl-16240015

ABSTRACT

Current methods for glycosylation of complex alcohols, e.g. with glycosyl trichloroacetimidates, generally occur in the presence of a strong Lewis acid 'promoter', and at sub-ambient temperatures. However, the older literature reports high-temperature glycosylations, especially of phenols. We have described an efficient method for glycosylation of alcohols under neutral conditions, using as anomeric leaving group methyl 3,5-dinitrosalicylate (DISAL). Only a very few reports have described the use of microwaves to promote glycosylations, mainly of simple alcohols. Here we describe fast, high-temperature glycosylations using precise microwave heating in the synthesis of oligosaccharides, with both DISAL and widely used trichloroacetimidate glycosyl donors in the absence of strong Lewis acids. Also, we have applied microwave heating as a general protocol for evaluating new, potential glycosyl donors.


Subject(s)
Glycosylation , Microwaves , Oligosaccharides/chemical synthesis , Alcohols/chemistry , Hot Temperature , Methods
SELECTION OF CITATIONS
SEARCH DETAIL
...