Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Antibodies (Basel) ; 9(3)2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32756297

ABSTRACT

Plague is a zoonotic disease that is caused by Yersinia pestis. Monoclonal antibodies (mAbs) that bind to the V-antigen, a virulence factor that is produced by Y. pestis, can passively protect mice from plague. An analysis of protective mAbs that bind to V-antigen was made to assess binding sites, avidities, and affinities. Anti-V mAbs were screened for their efficacy in a murine model of plague. Antigen-binding sites of protective V mAbs were determined with a linear peptide library, V-antigen fragment, competitive binding, and surface plasmon resonance. The avidities to the V-antigen was determined by ELISA, and affinities of the mAbs to the V-antigen were determined by surface plasmon resonance. The most protective mAb 7.3 bound to a unique conformational site on the V-antigen, while a less protective mAb bound to a different conformational site located on the same V-antigen fragment as mAb 7.3. The avidity of mAb 7.3 for the V-antigen was neither the strongest overall nor did it have the highest affinity for the V-antigen. The binding site of the most protective mAb was critical in its ability to protect against a lethal plague challenge.

2.
Bioorg Med Chem Lett ; 29(19): 126628, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31445853

ABSTRACT

Inositol hexakisphosphate kinases (IP6Ks) have been increasingly studied as therapeutically interesting enzymes. IP6K isoform specific knock-outs have been used to successfully explore inositol pyrophosphate physiology and related pathologies. A pan-IP6K inhibitor, N2-(m-trifluorobenzyl)-N6-(p-nitrobenzyl) purine (TNP), has been used to confirm phenotypes observed in genetic knock-out experiments; however, it suffers by having modest potency and poor solubility making it difficult to handle for in vitro applications in the absence of DMSO. Moreover, TNP's pan-IP6K inhibitory profile does not inform which IP6K isoform is responsible for which phenotypes. In this report we describe a series of purine-based isoform specific IP6K1 inhibitors. The lead compound was identified after multiple rounds of SAR and has been found to selectively inhibit IP6K1 over IP6K2 or IP6K3 using biochemical and biophysical approaches. It also boasts increased solubility and IP6K1 potency over TNP. These new compounds are useful tools for additional assay development and exploration of IP6K1 specific biology.


Subject(s)
Phosphotransferases (Phosphate Group Acceptor)/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Humans , Protein Isoforms , Structure-Activity Relationship
3.
PLoS One ; 5(10): e13047, 2010 Oct 13.
Article in English | MEDLINE | ID: mdl-20976274

ABSTRACT

Yersinia pestis is the etiologic agent of plague that has killed more than 200 million people throughout the recorded history of mankind. Antibiotics may provide little immediate relief to patients who have a high bacteremia or to patients infected with an antibiotic resistant strain of plague. Two virulent factors of Y. pestis are the capsid F1 protein and the low-calcium response (Lcr) V-protein or V-antigen that have been proven to be the targets for both active and passive immunization. There are mouse monoclonal antibodies (mAbs) against the F1- and V-antigens that can passively protect mice in a murine model of plague; however, there are no anti-Yersinia pestis monoclonal antibodies available for prophylactic or therapeutic treatment in humans. We identified one anti-F1-specific human mAb (m252) and two anti-V-specific human mAb (m253, m254) by panning a naïve phage-displayed Fab library against the F1- and V-antigens. The Fabs were converted to IgG1s and their binding and protective activities were evaluated. M252 bound weakly to peptides located at the F1 N-terminus where a protective mouse anti-F1 mAb also binds. M253 bound strongly to a V-antigen peptide indicating a linear epitope; m254 did not bind to any peptide from a panel of 53 peptides suggesting that its epitope may be conformational. M252 showed better protection than m253 and m254 against a Y, pestis challenge in a plague mouse model. A synergistic effect was observed when the three antibodies were combined. Incomplete to complete protection was achieved when m252 was given at different times post-challenge. These antibodies can be further studied to determine their potential as therapeutics or prophylactics in Y. pestis infection in humans.


Subject(s)
Antibodies, Monoclonal/immunology , Disease Models, Animal , Plague/prevention & control , Yersinia pestis/immunology , Animals , Enzyme-Linked Immunosorbent Assay , Epitope Mapping , Mice , Plague/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...