Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Hum Genet ; 143(5): 695-701, 2024 May.
Article in English | MEDLINE | ID: mdl-38607411

ABSTRACT

With the increasing importance of genomic data in understanding genetic diseases, there is an essential need for efficient and user-friendly tools that simplify variant analysis. Although multiple tools exist, many present barriers such as steep learning curves, limited reference genome compatibility, or costs. We developed VARista, a free web-based tool, to address these challenges and provide a streamlined solution for researchers, particularly those focusing on rare monogenic diseases. VARista offers a user-centric interface that eliminates much of the technical complexity typically associated with variant analysis. The tool directly supports VCF files generated using reference genomes hg19, hg38, and the emerging T2T, with seamless remapping capabilities between them. Features such as gene summaries and links, tissue and cell-specific gene expression data for both adults and fetuses, as well as automated PCR design and integration with tools such as SpliceAI and AlphaMissense, enable users to focus on the biology and the case itself. As we demonstrate, VARista proved effective in narrowing down potential disease-causing variants, prioritizing them effectively, and providing meaningful biological context, facilitating rapid decision-making. VARista stands out as a freely available and comprehensive tool that consolidates various aspects of variant analysis into a single platform that embraces the forefront of genomic advancements. Its design inherently supports a shift in focus from technicalities to critical thinking, thereby promoting better-informed decisions in genetic disease research. Given its unique capabilities and user-centric design, VARista has the potential to become an essential asset for the genomic research community. https://VARista.link.


Subject(s)
Genome, Human , Internet , Software , Humans , Genomics/methods , Genetic Variation , Whole Genome Sequencing/methods
2.
J Med Virol ; 96(2): e29436, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38380509

ABSTRACT

Kaposi sarcoma (KS), caused by Herpesvirus-8 (HHV-8; KSHV), shows sporadic, endemic, and epidemic forms. While familial clustering of KS was previously recorded, the molecular basis of hereditary predilection to KS remains largely unknown. We demonstrate through genetic studies that a dominantly inherited missense mutation in BPTF segregates with a phenotype of classical KS in multiple immunocompetent individuals in two families. Using an rKSHV.219-infected CRISPR/cas9-model, we show that BPTFI2012T mutant cells exhibit higher latent-to-lytic ratio, decreased virion production, increased LANA staining, and latent phenotype in viral transcriptomics. RNA-sequencing demonstrated that KSHV infection dysregulated oncogenic-like response and P53 pathways, MAPK cascade, and blood vessel development pathways, consistent with KS. BPTFI2012T also enriched pathways of viral genome regulation and replication, immune response, and chemotaxis, including downregulation of IFI16, SHFL HLAs, TGFB1, and HSPA5, all previously associated with KSHV infection and tumorigenesis. Many of the differentially expressed genes are regulated by Rel-NF-κB, which regulates immune processes, cell survival, and proliferation and is pivotal to oncogenesis. We thus demonstrate BPTF mutation-mediated monogenic hereditary predilection of KSHV virus-induced oncogenesis, and suggest BPTF as a drug target.


Subject(s)
Herpesvirus 8, Human , Sarcoma, Kaposi , Humans , Carcinogenesis , Herpesvirus 8, Human/physiology , NF-kappa B/metabolism , Sarcoma, Kaposi/genetics , Virus Latency/genetics , Virus Replication
3.
J Med Genet ; 61(2): 117-124, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-37399313

ABSTRACT

BACKGROUND: Otosclerosis is a common cause of adult-onset progressive hearing loss, affecting 0.3%-0.4% of the population. It results from dysregulation of bone homeostasis in the otic capsule, most commonly leading to fixation of the stapes bone, impairing sound conduction through the middle ear. Otosclerosis has a well-known genetic predisposition including familial cases with apparent autosomal dominant mode of inheritance. While linkage analysis and genome-wide association studies suggested an association with several genomic loci and with genes encoding structural proteins involved in bone formation or metabolism, the molecular genetic pathophysiology of human otosclerosis is yet mostly unknown. METHODS: Whole-exome sequencing, linkage analysis, generation of CRISPR mutant mice, hearing tests and micro-CT. RESULTS: Through genetic studies of kindred with seven individuals affected by apparent autosomal dominant otosclerosis, we identified a disease-causing variant in SMARCA4, encoding a key component of the PBAF chromatin remodelling complex. We generated CRISPR-Cas9 transgenic mice carrying the human mutation in the mouse SMARCA4 orthologue. Mutant Smarca4+/E1548K mice exhibited marked hearing impairment demonstrated through acoustic startle response and auditory brainstem response tests. Isolated ossicles of the auditory bullae of mutant mice exhibited a highly irregular structure of the incus bone, and their in situ micro-CT studies demonstrated the anomalous structure of the incus bone, causing disruption in the ossicular chain. CONCLUSION: We demonstrate that otosclerosis can be caused by a variant in SMARCA4, with a similar phenotype of hearing impairment and abnormal bone formation in the auditory bullae in transgenic mice carrying the human mutation in the mouse SMARCA4 orthologue.


Subject(s)
Hearing Loss , Otosclerosis , Adult , Humans , Mice , Animals , Otosclerosis/genetics , Otosclerosis/surgery , Blister/complications , Genome-Wide Association Study , Reflex, Startle , Phenotype , Mice, Transgenic , Mutation , DNA Helicases/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics
4.
NPJ Genom Med ; 8(1): 22, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37580330

ABSTRACT

Genomic sequences residing within introns of few genes have been shown to act as enhancers affecting expression of neighboring genes. We studied an autosomal recessive phenotypic continuum of microphthalmia, anophthalmia and ocular coloboma, with no apparent coding-region disease-causing mutation. Homozygosity mapping of several affected Jewish Iranian families, combined with whole genome sequence analysis, identified a 0.5 Mb disease-associated chromosome 2q35 locus (maximal LOD score 6.8) harboring an intronic founder variant in NHEJ1, not predicted to affect NHEJ1. The human NHEJ1 intronic variant lies within a known specifically limb-development enhancer of a neighboring gene, Indian hedgehog (Ihh), known to be involved in eye development in mice and chickens. Through mouse and chicken molecular development studies, we demonstrated that this variant is within an Ihh enhancer that drives gene expression in the developing eye and that the identified variant affects this eye-specific enhancer activity. We thus delineate an Ihh enhancer active in mammalian eye development whose variant causes human microphthalmia, anophthalmia and ocular coloboma. The findings highlight disease causation by an intronic variant affecting the expression of a neighboring gene, delineating molecular pathways of eye development.

5.
Proc Natl Acad Sci U S A ; 120(7): e2217831120, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36745799

ABSTRACT

Myopathy is the main adverse effect of the widely prescribed statin drug class. Statins exert their beneficial effect by inhibiting HMG CoA-reductase, the rate-controlling enzyme of the mevalonate pathway. The mechanism of statin myopathy is yet to be resolved, and its treatment is insufficient. Through homozygosity mapping and whole exome sequencing, followed by functional analysis using confocal microscopy and biochemical and biophysical methods, we demonstrate that a distinct form of human limb girdle muscular disease is caused by a pathogenic homozygous loss-of-function missense mutation in HMG CoA reductase (HMGCR), encoding HMG CoA-reductase. We biochemically synthesized and purified mevalonolactone, never administered to human patients before, and establish the safety of its oral administration in mice. We then show that its oral administration is effective in treating a human patient with no significant adverse effects. Furthermore, we demonstrate that oral mevalonolactone resolved statin-induced myopathy in mice. We conclude that HMGCR mutation causes a late-onset severe progressive muscular disease, which shows similar features to statin-induced myopathy. Our findings indicate that mevalonolactone is effective both in the treatment of hereditary HMGCR myopathy and in a murine model of statin myopathy. Further large clinical trials are in place to enable the clinical use of mevalonolactone both in the rare orphan disease and in the more common statin myopathy.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Muscular Diseases , Animals , Humans , Mice , Autoantibodies/genetics , Hydroxymethylglutaryl CoA Reductases/genetics , Hydroxymethylglutaryl CoA Reductases/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Mevalonic Acid , Muscular Diseases/chemically induced , Muscular Diseases/drug therapy , Muscular Diseases/genetics , Mutation
6.
Mol Diagn Ther ; 26(5): 561-568, 2022 09.
Article in English | MEDLINE | ID: mdl-35796944

ABSTRACT

INTRODUCTION: Congenital myopathies are a broad group of inborn muscle disorders caused by a multitude of genetic factors, often characterized by muscle atrophy and hypotonia. METHODS: Clinical studies, imaging, histology, whole-exome sequencing (WES) and muscle tissue RNA studies. RESULTS: We describe a severe congenital myopathy manifesting at birth with bilateral clubfeet, delayed motor development and hypotonia, becoming evident by 4 months of age. At 3 years of age, the patient had tongue fasciculations, was bedridden, and was chronically ventilated via tracheostomy. Imaging studies demonstrated severe muscle atrophy and, surprisingly, cerebral atrophy; electromyography demonstrated a myasthenic pattern and histological evaluation did not facilitate a definitive diagnosis. Trio WES did not identify a causative variant, except for a non-canonical intronic TPM3 c.118-12G>A variant of uncertain significance. Transcript analysis of muscle tissue from the patient proved the pathogenicity of this homozygous variant, with a 97% reduction in the muscle-specific TPM3.12 transcript. DISCUSSION: This study broadens the phenotypic spectrum of recessive TPM3 disease, highlighting tongue fasciculations and bilateral clubfoot, as well as possibly-related cerebral atrophy. It also shows the importance of a broad approach to genetic analysis and the utility of RNA-based studies, demonstrating efficacy of early genome and transcriptome queries in facilitating rapid and cost-effective diagnosis of congenital myopathies.


Subject(s)
Muscle Hypotonia , Muscular Diseases , Fasciculation , Humans , Muscular Atrophy , Mutation , Phenotype , RNA , Tropomyosin/genetics
7.
Clin Genet ; 102(4): 324-332, 2022 10.
Article in English | MEDLINE | ID: mdl-35861243

ABSTRACT

Proteasome 26S, the eukaryotic proteasome, serves as the machinery for cellular protein degradation. It is composed of the 20S core particle and one or two 19S regulatory particles, composed of a base and a lid. To date, several human diseases have been associated with mutations within the 26S proteasome subunits; only one of them affects a base subunit. We now delineate an autosomal recessive syndrome of failure to thrive, severe developmental delay and intellectual disability, spastic tetraplegia with central hypotonia, chorea, hearing loss, micropenis and undescended testes, as well as mild elevation of liver enzymes. None of the affected individuals achieved verbal communication or ambulation. Ventriculomegaly was evident on MRI. Homozygosity mapping combined with exome sequencing revealed a disease-associated p.I328T PSMC1 variant. Protein modeling demonstrated that the PSMC1 variant is located at the highly conserved putative ATP binding and hydrolysis domain, and is suggested to interrupt a hydrophobic core within the protein. Fruit flies in which we silenced the Drosophila ortholog Rpt2 specifically in the eye exhibited an apparent phenotype that was highly rescued by the human wild-type PSMC1, yet only partly by the mutant PSMC1, proving the functional effect of the p.I328T disease-causing variant.


Subject(s)
ATPases Associated with Diverse Cellular Activities , Nervous System Diseases , Proteasome Endopeptidase Complex , ATPases Associated with Diverse Cellular Activities/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , Animals , Drosophila , Humans , Nervous System Diseases/genetics , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Syndrome
8.
Clin Genet ; 102(2): 123-129, 2022 08.
Article in English | MEDLINE | ID: mdl-35443069

ABSTRACT

Six individuals of consanguineous Bedouin kindred presented at infancy with an autosomal recessive syndrome of severe global developmental delay, positive pyramidal signs, unique dysmorphism, skeletal abnormalities, and severe failure to thrive with normal birth weights. Patients had a profound intellectual disability and cognitive impairment with almost no acquired developmental milestones by 12 months. Early-onset axial hypotonia evolved with progressive muscle weakness, reduced muscle tone, and hyporeflexia. Craniofacial dysmorphism consisted of a triangular face with a prominent forehead and midface hypoplasia. Magnetic resonance imaging (MRI) demonstrated thinning of the corpus callosum and paucity of white matter. Genome-wide linkage analysis identified a single ~4 Mbp disease-associated locus on chromosome 7q21.13-q21.3 (LOD score>5). Whole-exome and genome sequencing identified no nonsynonymous pathogenic biallelic variants in any of the genes within this locus. Following the exclusion of partially resembling syndromes, we now describe a novel autosomal recessive syndrome mapped to a ~4Mbp locus on chromosome 7.


Subject(s)
Intellectual Disability , Muscle Hypotonia , Chromosomes, Human, Pair 3 , Corpus Callosum/pathology , Failure to Thrive , Humans , Intellectual Disability/diagnostic imaging , Intellectual Disability/genetics , Intellectual Disability/pathology , Muscle Hypotonia/genetics , Muscle Hypotonia/pathology , Syndrome
9.
Nutrients ; 13(10)2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34684524

ABSTRACT

BACKGROUND: Dihydrolipoamide dehydrogenase (DLD lipoamide dehydrogenase, the E3 subunit of the pyruvate dehydrogenase complex (PDHC)) is the third catalytic enzyme of the PDHC, which converts pyruvate to acetyl-CoA catalyzed with the introduction of acetyl-CoA to the tricyclic acid (TCA) cycle. In humans, PDHC plays an important role in maintaining glycose homeostasis in an aerobic, energy-generating process. Inherited DLD-E3 deficiency, caused by the pathogenic variants in DLD, leads to variable presentations and courses of illness, ranging from myopathy, recurrent episodes of liver disease and vomiting, to Leigh disease and early death. Currently, there is no consensus on treatment guidelines, although one suggested solution is a ketogenic diet (KD). OBJECTIVE: To describe the use and effects of KD in patients with DLD-E3 deficiency, compared to the standard treatment. RESULTS: Sixteen patients were included. Of these, eight were from a historical cohort, and of the other eight, four were on a partial KD. All patients were homozygous for the D479V (or D444V, which corresponds to the mutated mature protein without the mitochondrial targeting sequence) pathogenic variant in DLD. The treatment with partial KD was found to improve patient survival. However, compared to a historical cohort, the patients' quality of life (QOL) was not significantly improved. CONCLUSIONS: The use of KD offers an advantage regarding survival; however, there is no significant improvement in QOL.


Subject(s)
Acidosis, Lactic/diet therapy , Acidosis, Lactic/mortality , Diet, Ketogenic/mortality , Enteral Nutrition/mortality , Maple Syrup Urine Disease/diet therapy , Maple Syrup Urine Disease/mortality , Acidosis, Lactic/genetics , Adolescent , Child , Child, Preschool , Diet, Ketogenic/methods , Enteral Nutrition/methods , Female , Gastrostomy , Humans , Infant , Male , Maple Syrup Urine Disease/genetics , Mutation , Quality of Life
10.
Genes (Basel) ; 12(8)2021 07 28.
Article in English | MEDLINE | ID: mdl-34440319

ABSTRACT

Multiple acyl-CoA dehydrogenase deficiency (MADD) is a fatty acid and amino acid oxidation defect caused by a deficiency of the electron-transfer flavoprotein (ETF) or the electron-transfer flavoprotein dehydrogenase (ETFDH). There are three phenotypes of the disease, two neonatal forms and one late-onset. Previous studies have suggested that there is a phenotype-genotype correlation. We report on six patients from a single Bedouin tribe, five of whom were sequenced and found to be homozygous to the same variant in the ETFDH gene, with variable severity and age of presentation. The variant, NM_004453.3 (ETFDH): c.524G>A, p.(R175H), was previously recognized as pathogenic, although it has not been reported in the literature in a homozygous state before. R175H is located near the FAD binding site, likely affecting the affinity of FAD for EFT:QO. The single homozygous ETFDH pathogenic variant was found to be causing MADD in this cohort with an unexpectedly variable severity of presentation. The difference in severity could partly be explained by early diagnosis via newborn screening and early treatment with the FAD precursor riboflavin, highlighting the importance of early detection by newborn screening.


Subject(s)
Arabs/genetics , Homozygote , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Mutation , Humans
11.
J Med Genet ; 58(4): 254-263, 2021 04.
Article in English | MEDLINE | ID: mdl-32527956

ABSTRACT

BACKGROUND: Mutation in S-phase cyclin A-associated protein rin the endoplasmic reticulum (SCAPER) have been found across ethnicities and have been shown to cause variable penetrance of an array of pathological traits, including intellectual disability, retinitis pigmentosa and ciliopathies. METHODS: Human clinical phenotyping, surgical testicular sperm extraction and testicular tissue staining. Generation and analysis of short spindle 3 (ssp3) (SCAPER orthologue) Drosophila CAS9-knockout lines. In vitro microtubule (MT) binding assayed by total internal reflection fluorescence microscopy. RESULTS: We show that patients homozygous for a SCAPER mutation lack SCAPER expression in spermatogonia (SPG) and are azoospermic due to early defects in spermatogenesis, leading to the complete absence of meiotic cells. Interestingly, Drosophila null mutants for the ubiquitously expressed ssp3 gene are viable and female fertile but male sterile. We further show that male sterility in ssp3 null mutants is due to failure in both chromosome segregation and cytokinesis. In cells undergoing male meiosis, the MTs emanating from the centrosomes do not appear to interact properly with the chromosomes, which remain dispersed within dividing spermatocytes (SPCs). In addition, mutant SPCs are unable to assemble a normal central spindle and undergo cytokinesis. Consistent with these results, an in vitro assay demonstrated that both SCAPER and Ssp3 directly bind MTs. CONCLUSIONS: Our results show that SCAPER null mutations block the entry into meiosis of SPG, causing azoospermia. Null mutations in ssp3 specifically disrupt MT dynamics during male meiosis, leading to sterility. Moreover, both SCAPER and Ssp3 bind MTs in vitro. These results raise the intriguing possibility of a common feature between human and Drosophila meiosis.


Subject(s)
Carrier Proteins/genetics , Infertility, Male/genetics , Microtubules/genetics , Serine Endopeptidases/genetics , Animals , Chromosome Segregation/genetics , Disease Models, Animal , Drosophila melanogaster/genetics , Genetic Predisposition to Disease , Humans , Infertility, Male/pathology , Male , Meiosis/genetics , Mutation/genetics , Spermatocytes/growth & development , Spermatocytes/pathology , Spindle Apparatus/genetics , Spindle Apparatus/pathology , Testis/growth & development , Testis/pathology
12.
Neurogenetics ; 21(4): 301-304, 2020 10.
Article in English | MEDLINE | ID: mdl-32488727

ABSTRACT

Mutations in myotubularin-related protein 2 (MTMR2) were shown to underlie Charcot-Marie-Tooth type 4B1 (CMT4B1) disease, a rare autosomal recessive demyelinating neuropathy, characterized by severe early-onset motor and sensory neuropathy. We describe three siblings of consanguineous kindred presenting with hypotonia, reduced muscle tone, action tremor, dysmetria, areflexia, and skeletal deformities, consistent with a diagnosis of CMT. Whole-exome sequencing identified a novel homozygous c.336_337 insertion mutation in MTMR2, resulting in a frameshift and putative truncated protein. In this concise report, we discuss the clinical presentation of this rare disease and support the limited number of observations regarding the pathogenesis of MTMR2-related neuropathies.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , Homozygote , Mutation , Nervous System Diseases/genetics , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Biopsy , Consanguinity , Family Health , Female , Humans , Male , Muscles/pathology , Pedigree , Phenotype , Sequence Analysis, DNA , Exome Sequencing
13.
Am J Med Genet A ; 182(6): 1506-1512, 2020 06.
Article in English | MEDLINE | ID: mdl-32232962

ABSTRACT

COX15 mutations were shown to underlie Leigh syndrome (LS), a progressive subacute necrotizing encephalopathy caused by defects in the mitochondrial respiratory chain. Here, two siblings of consanguineous kindred presented in infancy with a syndrome of hypotonia, nystagmus, psychomotor retardation, and pyramidal signs. Toward the end of their second year, both patients developed progressive quadriparesis, convulsions, and pseudobulbar palsy. Similar to two previously reported cases, one of the two affected siblings had severe hypertrophic obstructive cardiomyopathy, hearing loss, and no visual response. Through linkage analysis and whole-exome sequencing, we identified a homozygous p.R217W mutation in Cytochrome C oxidase assembly protein COX15 homolog. Consistent with the known heterogeneity of mitochondrial diseases in general and that of LS in particular, several phenotypic features were markedly distinguished between the affected siblings and in relation to previous reports of COX15 mutations. Interestingly, of the previously reported five cases of COX15-mutated patients, all of different ethnic origins, three had a p.R217W mutation. We highlight p.R217W as a hotspot mutation in COX15 and delineate the phenotypic variability, both between the patients we describe and in all cases reported to date.


Subject(s)
Biological Variation, Population/genetics , Cardiomyopathy, Hypertrophic/genetics , Electron Transport Complex IV/genetics , Leigh Disease/genetics , Brain/diagnostic imaging , Brain/pathology , Cardiomyopathy, Hypertrophic/complications , Cardiomyopathy, Hypertrophic/diagnostic imaging , Cardiomyopathy, Hypertrophic/pathology , Child , Child, Preschool , Female , Humans , Infant , Leigh Disease/complications , Leigh Disease/diagnostic imaging , Leigh Disease/pathology , Magnetic Resonance Imaging , Male , Mutation/genetics , Pedigree , Siblings , Exome Sequencing
14.
Clin Genet ; 97(6): 920-926, 2020 06.
Article in English | MEDLINE | ID: mdl-32157688

ABSTRACT

A congenital disorder of glycosylation due to biallelic mutations in B4GALT1 has been previously reported in only three patients with two different mutations. Through homozygosity mapping followed by segregation analysis in an extended pedigree, we identified three additional patients homozygous for a novel mutation in B4GALT1, expanding the phenotypic spectrum of the disease. The patients showed a uniform clinical presentation with intellectual disability, marked pancytopenia requiring chronic management, and novel features including pulmonary hypertension and nephrotic syndrome. Notably, affected individuals exhibited a moderate elevation of Man3GlcNAc4Fuc1 on serum N-glycan analysis, yet two of the patients had a normal pattern of transferrin glycosylation in repeated analysis. The novel mutation is the third disease-causing variant described in B4GALT1, and the first one within its transmembrane domain.


Subject(s)
Congenital Disorders of Glycosylation/genetics , Galactosyltransferases/genetics , Intellectual Disability/genetics , Nephrotic Syndrome/genetics , Cholestasis/genetics , Cholestasis/pathology , Congenital Disorders of Glycosylation/pathology , Glycosylation , Homozygote , Humans , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/pathology , Infant , Infant, Newborn , Intellectual Disability/pathology , Male , Mutation/genetics , Nephrotic Syndrome/pathology , Pedigree , Seizures/genetics , Seizures/pathology , Thrombocytopenia/genetics , Thrombocytopenia/pathology
15.
Mol Genet Genomic Med ; 8(9): e1167, 2020 09.
Article in English | MEDLINE | ID: mdl-32048457

ABSTRACT

BACKGROUND: Multiple sulfatase deficiency (MSD, MIM #272200) is an ultrarare congenital disorder caused by SUMF1 mutation and often misdiagnosed due to its complex clinical presentation. Impeded by a lack of natural history, knowledge gained from individual case studies forms the source for a reliable diagnosis and consultation of patients and parents. METHODS: We collected clinical records as well as genetic and metabolic test results from two MSD patients. The functional properties of a novel SUMF1 variant were analyzed after expression in a cell culture model. RESULTS: We report on two MSD patients-the first neonatal type reported in Israel-both presenting with this most severe manifestation of MSD. Our patients showed uniform clinical symptoms with persistent pulmonary hypertension, hypotonia, and dysmorphism at birth. Both patients were homozygous for the same novel SUMF1 mutation (c.1043C>T, p.A348V). Functional analysis revealed that the SUMF1-encoded variant of formylglycine-generating enzyme is highly instable and lacks catalytic function. CONCLUSION: The obtained results confirm genotype-phenotype correlation in MSD, expand the spectrum of clinical presentation and are relevant for diagnosis including the extremely rare neonatal severe type of MSD.


Subject(s)
Multiple Sulfatase Deficiency Disease/genetics , Mutation, Missense , Oxidoreductases Acting on Sulfur Group Donors/genetics , Phenotype , Cell Line, Tumor , Child, Preschool , Enzyme Stability , Homozygote , Humans , Infant , Male , Multiple Sulfatase Deficiency Disease/pathology , Oxidoreductases Acting on Sulfur Group Donors/metabolism
17.
J Clin Invest ; 129(12): 5163-5168, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31638601

ABSTRACT

Gout is caused by deposition of monosodium urate crystals in joints when plasma uric acid levels are chronically elevated beyond the saturation threshold, mostly due to renal underexcretion of uric acid. Although molecular pathways of this underexcretion have been elucidated, its etiology remains mostly unknown. We demonstrate that gout can be caused by a mutation in LDHD within the putative catalytic site of the encoded d-lactate dehydrogenase, resulting in augmented blood levels of d-lactate, a stereoisomer of l-lactate, which is normally present in human blood in miniscule amounts. Consequent excessive renal secretion of d-lactate in exchange for uric acid reabsorption culminated in hyperuricemia and gout. We showed that LDHD expression is enriched in tissues with a high metabolic rate and abundant mitochondria and that d-lactate dehydrogenase resides in the mitochondria of cells overexpressing the human LDHD gene. Notably, the p.R370W mutation had no effect on protein localization. In line with the human phenotype, injection of d-lactate into naive mice resulted in hyperuricemia. Thus, hyperuricemia and gout can result from the accumulation of metabolites whose renal excretion is coupled to uric acid reabsorption.


Subject(s)
Gout/genetics , Hyperuricemia/genetics , Lactate Dehydrogenases/genetics , Mutation, Missense , Adult , Animals , Catalytic Domain , Child , DNA/metabolism , Family Health , Female , HEK293 Cells , Heterozygote , Homozygote , Humans , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Mutation , Pedigree , Stereoisomerism , Uric Acid/metabolism
18.
Ann Hum Genet ; 83(5): 361-366, 2019 09.
Article in English | MEDLINE | ID: mdl-30977917

ABSTRACT

Four affected individuals of consanguineous kindred presented at infancy with an apparently autosomal recessive syndrome of polyuria and hypokalemic metabolic alkalosis, following maternal polyhydramnios and premature delivery, culminating in severe failure to thrive. Hypercalciuria, nephrocalcinosis, and hyperaldosteronism were further apparent as well as an unusual finding of intermittent hypernatremia. Additionally, all patients demonstrated variable micrognathia with upper respiratory airway abnormalities. As neither postnatal hyperkalemia nor permanent hearing deficits were shown, clinical assessment was consistent with antenatal Bartter syndrome (ABS) type I, which was never described before in the Israeli Bedouin population. Through genome-wide linkage analysis, we identified a single ∼3.3 Mbp disease-associated locus on chromosome 15q21.1, segregating within the pedigree. Whole-exome sequencing revealed a single novel homozygous missense mutation within this locus, in SLC12A1, encoding the Na-K-Cl cotransporter, NKCC2, in accordance with the clinical diagnosis. In this concise study, we report a novel missense mutation within the SLC12A1 gene, causing a severe form of ABS type I, the first to be described in Israeli Bedouins, with unusual clinical features of hypernatremia caused by nephrogenic diabetes insipidus and putatively related micrognathia with upper airway abnormalities .


Subject(s)
Arabs/genetics , Bartter Syndrome/genetics , Mutation, Missense , Solute Carrier Family 12, Member 1/genetics , Consanguinity , Female , Genetic Linkage , Homozygote , Humans , Infant, Newborn , Infant, Premature , Israel , Male , Pedigree
19.
Am J Med Genet A ; 179(7): 1293-1298, 2019 07.
Article in English | MEDLINE | ID: mdl-30950220

ABSTRACT

Respiratory chain disorders comprise a heterogeneous group of diseases that are the result of mutations in nuclear or mitochondrial genes. TMEM70 encodes a nuclear protein involved in the assembly of respiratory chain complex V. Although mutations in various genes can result in isolated complex V deficiency; TMEM70 mutations represent the most common reported etiology. TMEM70 deficiency is known to cause a syndrome of neonatal mitochondrial encephalocardiomyopathy, accompanied by elevated lactate and hyperammonemia. Elevated citrulline has been reported previously in different inborn errors of metabolism, although uncommonly associated with TMEMT70 deficiency. We present a series of two siblings diagnosed with TMEM70 deficiency, and describe hypercitrullinemia during decompensation as a new finding in this condition. The cause of hyperammonemia in TMEM70 deficiency was previously assumed to be related to carbamoyl phosphate synthase 1 deficiency, but our finding of hypercitrullinemia rules out this possibility. We thus propose a different etiology for the hyperammonemia seen in these patients.


Subject(s)
Citrulline/blood , Frameshift Mutation , Hyperammonemia/genetics , Membrane Proteins/genetics , Mitochondrial Proteins/genetics , Child, Preschool , Electron Transport , Female , Humans , Infant, Newborn , Male , Mitochondrial Encephalomyopathies/genetics , Pedigree
20.
Brain ; 142(3): 574-585, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30715179

ABSTRACT

Microtubule associated protein 11 (MAP11, previously termed C7orf43) encodes a highly conserved protein whose function is unknown. Through genome-wide linkage analysis combined with whole exome sequencing, we demonstrate that human autosomal recessive primary microcephaly is caused by a truncating mutation in MAP11. Moreover, homozygous MAP11-orthologue CRISPR/Cas9 knock-out zebrafish presented with microcephaly and decreased neuronal proliferation, recapitulating the human phenotype. We demonstrate that MAP11 is ubiquitously transcribed with high levels in brain and cerebellum. Immunofluorescence and co-immunoprecipitation studies in SH-SY5Y cells showed that MAP11 associates with mitotic spindles, co-localizing and physically associating with α-tubulin during mitosis. MAP11 expression precedes α-tubulin in gap formation of cell abscission at the midbody and is co-localized with PLK1, a key regulator of cytokinesis, at the edges of microtubule extensions of daughter cells post cytokinesis abscission, implicating a role in mitotic spindle dynamics and in regulation of cell abscission during cytokinesis. Finally, lentiviral-mediated silencing of MAP11 diminished SH-SY5Y cell viability, reducing proliferation rather than affecting apoptosis. Thus, MAP11 encodes a microtubule-associated protein that plays a role in spindle dynamics and cell division, in which mutations cause microcephaly in humans and zebrafish.


Subject(s)
Microcephaly/etiology , Microcephaly/genetics , Microtubule-Associated Proteins/genetics , Animals , Cell Cycle Proteins/metabolism , Child , Child, Preschool , Cytokinesis , Disease Models, Animal , Female , HeLa Cells , Humans , Male , Microcephaly/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/genetics , Mitosis , Mutation , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Spindle Apparatus/genetics , Tubulin/genetics , Tubulin/metabolism , Zebrafish/metabolism , Zebrafish Proteins/metabolism , Polo-Like Kinase 1
SELECTION OF CITATIONS
SEARCH DETAIL
...