Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biochem J ; 410(1): 123-9, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-17935485

ABSTRACT

Liver FABP (fatty-acid-binding protein) binds a variety of non-polar anionic ligands including fatty acids, fatty acyl CoAs, lysophospholipids and bile acids. Liver FABP is also able to bind to anionic phospholipid vesicles under conditions of low ionic strength, and membrane binding results in the release of bound ligand. However, the molecular interactions involved in binding to the phospholipid interface and the mechanism of ligand release are not known. Ligand release could be due to a significant conformational change in the protein at the interface or interaction of a phospholipid molecule with the ligand-binding cavity of the protein resulting in ligand displacement. Two portal mutant proteins of liver FABP, L28W and M74W, have now been used to investigate the binding of liver FABP to anionic phospholipid vesicles, monitoring changes in fluorescence and also fluorescence quenching in the presence of brominated lipids. There is a large increase in fluorescence intensity when the L28W mutant protein binds to vesicles prepared from DOPG (dioleoyl-sn-phosphatidylglycerol), but a large decrease in fluorescence intensity when the M74W mutant binds to these vesicles. The Br(4)-phospholipid prepared by bromination of DOPG dramatically quenches both L28W and M74W, consistent with the close proximity of a fatty acyl chain to the tryptophan residues. The binding of liver FABP to DOPG vesicles is accompanied by only a minimal change in the CD spectrum. Overall, the results are consistent with a molecule of anionic phospholipid interacting with the central cavity of the liver FABP, possibly involving the phospholipid molecule in an extended conformation.


Subject(s)
Fatty Acid-Binding Proteins/metabolism , Phospholipids/metabolism , Animals , Base Sequence , DNA Primers , Fluorescence , Protein Binding , Rats
2.
J Biol Chem ; 280(3): 1782-9, 2005 Jan 21.
Article in English | MEDLINE | ID: mdl-15542605

ABSTRACT

Liver fatty acid-binding protein (FABP) binds a variety of non-polar anionic ligands including fatty acids, fatty acyl CoAs, and bile acids. Previously we prepared charge reversal mutants and demonstrated the importance of lysine residues within the portal region in ligand and membrane binding. We have now prepared several tryptophan-containing mutants within the portal region, and one tryptophan at position 28 (L28W) has proved remarkably effective as an intrinsic probe to further study ligand binding. The fluorescence of the L28W mutant was very sensitive to fatty acid and bile acid binding where a large (up to 4-fold) fluorescence enhancement was obtained. In contrast, the binding of oleoyl CoA reduced tryptophan fluorescence. Positive cooperativity for fatty acid binding was observed while detailed information on the orientation of binding of bile acid derivatives was obtained. The ability of bound oleoyl CoA to reduce the fluorescence of L28W provided an opportunity to demonstrate that fatty acyl CoAs can compete with fatty acids for binding to liver FABP under physiological conditions, further highlighting the role of fatty acyl CoAs in modulating FABP function in the cell.


Subject(s)
Carrier Proteins/genetics , Tryptophan/genetics , Animals , Base Sequence , Carrier Proteins/metabolism , Carrier Proteins/physiology , Circular Dichroism , DNA Primers , Fatty Acid-Binding Proteins , Ligands , Models, Molecular , Mutagenesis, Site-Directed , Protein Binding , Protein Conformation , Rats
SELECTION OF CITATIONS
SEARCH DETAIL