Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 358(6370): 1617-1622, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29192133

ABSTRACT

The release of paused RNA polymerase II into productive elongation is highly regulated, especially at genes that affect human development and disease. To exert control over this rate-limiting step, we designed sequence-specific synthetic transcription elongation factors (Syn-TEFs). These molecules are composed of programmable DNA-binding ligands flexibly tethered to a small molecule that engages the transcription elongation machinery. By limiting activity to targeted loci, Syn-TEFs convert constituent modules from broad-spectrum inhibitors of transcription into gene-specific stimulators. Here we present Syn-TEF1, a molecule that actively enables transcription across repressive GAA repeats that silence frataxin expression in Friedreich's ataxia, a terminal neurodegenerative disease with no effective therapy. The modular design of Syn-TEF1 defines a general framework for developing a class of molecules that license transcription elongation at targeted genomic loci.


Subject(s)
Chromatin/metabolism , Friedreich Ataxia/genetics , Iron-Binding Proteins/genetics , Transcriptional Activation , Transcriptional Elongation Factors/chemical synthesis , Transcriptional Elongation Factors/metabolism , Gene Silencing , Humans , RNA Polymerase II/metabolism , Transcription, Genetic , Frataxin
2.
Neurosci Lett ; 660: 109-114, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28923481

ABSTRACT

Triggering receptor expressed in myeloid cells (TREM2) is a member of the immunoglobulin superfamily and is expressed in macrophages, dendritic cells, microglia, and osteoclasts. TREM2 plays a role in phagocytosis, regulates release of cytokine, contributes to microglia maintenance, and its ectodomain is shed from the cell surface. Here, the question was addressed at which position sheddases cleave TREM2 and what are the proteases involved in this process. Using both pharmacological and genetic approaches we report that the main protease contributing to the release of TREM2 ectodomain is ADAM17, (a disintegrin and metalloproteinase domain containing protein, also called TACE, TNFα converting enzyme) while ADAM10 plays a minor role. Complementary biochemical experiments reveal that cleavage occurs between histidine 157 and serine 158. Shedding is not altered for the R47H-mutated TREM2 protein that confers an increased risk for the development of Alzheimers disease. These findings reveal a link between shedding of TREM2 and its regulation during inflammatory conditions or chronic neurodegenerative disease like AD in which activity or expression of sheddases might be altered.


Subject(s)
ADAM17 Protein/metabolism , Histidine/metabolism , Membrane Glycoproteins/metabolism , Receptors, Immunologic/metabolism , ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Animals , CHO Cells , Cell Line , Cricetulus , Humans , Membrane Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...