Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int Wound J ; 20(6): 2346-2359, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36564054

ABSTRACT

Diabetic chronic wounds cause massive levels of patient suffering and economic problems worldwide. The state of chronic inflammation arises in response to a complex combination of diabetes mellitus-related pathophysiologies. Advanced treatment options are available; however, many wounds still fail to heal, exacerbating morbidity and mortality. This review describes the chronic inflammation pathophysiologies in diabetic ulcers and treatment options that may help address this dysfunction either directly or indirectly. We suggest that treatments to reduce inflammation within these complex wounds may help trigger healing.


Subject(s)
Diabetes Complications , Diabetes Mellitus , Diabetic Foot , Skin Diseases , Humans , Diabetes Complications/therapy , Inflammation/therapy , Wound Healing/physiology , Diabetic Foot/therapy
2.
Polymers (Basel) ; 11(5)2019 May 22.
Article in English | MEDLINE | ID: mdl-31121845

ABSTRACT

Polyhexamethylene biguanide (PHMB) is a broad-spectrum antiseptic which avoids many efficacy and toxicity problems associated with antimicrobials, in particular, it has a low risk of loss of susceptibility due to acquired antimicrobial resistance. Despite such advantages, PHMB is not widely used in wound care, suggesting more research is required to take full advantage of PHMB's properties. We hypothesised that a nanofibre morphology would provide a gradual release of PHMB, prolonging the antimicrobial effects within the therapeutic window. PHMB:polyurethane (PU) electrospun nanofibre membranes were prepared with increasing PHMB concentrations, and the effects on antimicrobial activities, mechanical properties and host cell toxicity were compared. Overall, PHMB:PU membranes displayed a burst release of PHMB during the first hour following PBS immersion (50.5-95.9% of total released), followed by a gradual release over 120 h (≤25 wt % PHMB). The membranes were hydrophilic (83.7-53.3°), gradually gaining hydrophobicity as PHMB was released. They displayed superior antimicrobial activity, which extended past the initial release period, retained PU hyperelasticity regardless of PHMB concentration (collective tensile modulus of 5-35% PHMB:PU membranes, 3.56 ± 0.97 MPa; ultimate strain, >200%) and displayed minimal human cell toxicity (<25 wt % PHMB). With further development, PHMB:PU electrospun membranes may provide improved wound dressings.

SELECTION OF CITATIONS
SEARCH DETAIL
...