Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Imaging Radiat Oncol ; 19: 60-65, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34307920

ABSTRACT

BACKGROUND AND PURPOSE: Automatic approaches are widely implemented to automate dose optimization in radiotherapy treatment planning. This study systematically investigates how to configure automatic planning in order to create the best possible plans. MATERIALS AND METHODS: Automatic plans were generated using protocol based automatic iterative optimization. Starting from a simple automation protocol which consisted of the constraints for targets and organs at risk (OAR), the performance of the automatic approach was evaluated in terms of target coverage, OAR sparing, conformity, beam complexity, and plan quality. More complex protocols were systematically explored to improve the quality of the automatic plans. The protocols could be improved by adding a dose goal on the outer 2 mm of the PTV, by setting goals on strategically chosen subparts of OARs, by adding goals for conformity, and by limiting the leaf motion. For prostate plans, development of an automated post-optimization procedure was required to achieve precise control over the dose distribution. Automatic and manually optimized plans were compared for 20 head and neck (H&N), 20 prostate, and 20 rectum cancer patients. RESULTS: Based on simple automation protocols, the automatic optimizer was not always able to generate adequate treatment plans. For the improved final configurations for the three sites, the dose was lower in automatic plans compared to the manual plans in 12 out of 13 considered OARs. In blind tests, the automatic plans were preferred in 80% of cases. CONCLUSIONS: With adequate, advanced, protocols the automatic planning approach is able to create high-quality treatment plans.

2.
Phys Imaging Radiat Oncol ; 10: 7-13, 2019 Apr.
Article in English | MEDLINE | ID: mdl-33458261

ABSTRACT

BACKGROUND AND PURPOSE: Automated configurations are increasingly utilised for radiotherapy treatment planning. This study investigates whether automated treatment planning configurations are adaptable across clinics with different treatment planning protocols for prostate radiotherapy. MATERIAL AND METHODS: The study comprised three participating centres, each with pre-existing locally developed prostate AutoPlanning configurations using the Pinnacle3® treatment planning system. Using a three-patient training dataset circulated from each centre, centres modified local prostate configurations to generate protocol compliant treatment plans for the other two centres. Each centre applied modified configurations on validation datasets distributed from each centre (10 patients from 3 centres). Plan quality was assessed through DVH analysis and protocol compliance. RESULTS: All treatment plans were clinically acceptable, based off relevant treatment protocol. Automated planning configurations from Centre's A and B recorded 2 and 18 constraint and high priority deviations respectively. Centre C configurations recorded no high priority deviations. Centre A configurations produced treatment plans with superior dose conformity across all patient PTVs (mean = 1.14) compared with Centre's B and C (mean = 1.24 and 1.22). Dose homogeneity was consistent between all centre's configurations (mean = 0.083, 0.077, and 0.083 respectively). CONCLUSIONS: This study demonstrates that automated treatment planning configurations can be shared and implemented across multiple centres with simple adaptations to local protocols.

3.
Phys Imaging Radiat Oncol ; 12: 38-43, 2019 Oct.
Article in English | MEDLINE | ID: mdl-33458293

ABSTRACT

BACKGROUND AND PURPOSE: Automatic delineations are often used as a starting point in the radiotherapy contouring workflow, after which they are manually reviewed and adapted. The purpose of this work was to quantify the geometric differences between automatic and manually edited breast clinical target volume (CTV) contours and evaluate the dosimetric impact of such differences. MATERIALS AND METHODS: Eighty-seven automatically generated and manually edited contours of the left breast were retrieved from our clinical database. The automatic contours were obtained with a commercial auto-segmentation toolbox. The geometrical comparison was performed both locally and globally using the Dice score and the 95% Hausdorff distance (HD). Two treatment plans were generated for each patient and the obtained dosimetric differences were quantified using dose-volume histogram (DVH) parameters in the lungs, heart and planning target volume (PTV). An inter-observer variability study with four observers was performed on a subset of ten patients. RESULTS: A median Dice score of 0.95 and a median 95% HD of 9.7 mm were obtained. Larger breasts were consistently under-contoured. Cranial under-contouring resulted in more than 5% relative decrease in PTV coverage in 15% of the patients while lateroposterior over-contouring increased the lung V20Gy by a maximum of 2%. The inter-observer variability of the PTV coverage was smaller than the difference between PTV coverage achieved by the automatic and the consensus contours. CONCLUSIONS: Cranial under-contouring resulted in under-treatment, while lateroposterior over-contouring resulted in an increased lung dosage that is clinically irrelevant, showing the need to consider dose distributions to assess the clinical impact of local geometrical differences.

4.
Med Dosim ; 44(2): 183-189, 2019.
Article in English | MEDLINE | ID: mdl-30135024

ABSTRACT

We quantify the robustness of a proposed volumetric-modulated arc therapy (VMAT) planning and treatment technique for radiotherapy of breast cancer involving the axillary nodes. The proposed VMAT technique is expected to be more robust to breast shape changes and setup errors, yet maintain the improved conformity of VMAT compared to our current standard technique that uses tangential intensity-modulated radiation therapy (IMRT) fields. Treatment plans were created for 10 patients. To account for anatomical variation, planning was carried out on a computed tomography (CT) with an expanded breast, followed by segment weight optimization (SWO) on the original planning CT (VMAT + SWO). For comparison purposes, tangential field IMRT plans and conventional VMAT (cVMAT) plans were also created. Anatomical changes (expansion and contraction of the breast) and setup errors were simulated to quantify changes in target coverage, target maximum, and organ-at-risk (OAR) doses. Finally, robustness was assessed by calculating the actual delivered dose for each fraction using cone-beam CT images acquired during treatment. Target coverage of VMAT + SWO was shown to be significantly more robust compared to cVMAT technique, against anatomical variations and setup errors. Sensitivity of the clinical target volume (CTV) V95% is -5%/cm of expansion for the proposed technique, which is identical to the IMRT technique and much lower than the -22%/cm for cVMAT. Results are similar for setup errors. OAR doses are mostly insensitive to anatomical variations and the OAR sensitivity to setup variations does not depend on the planning technique. The results are confirmed by dose distributions recalculated on cone-beam CT, showing that for VMAT + SWO the CTV V95% remains within 2.5% of the planned value, whereas it deviates by up to 7% for cVMAT. A practical VMAT planning technique is developed, which is robust to daily anatomical variations and setup errors.


Subject(s)
Breast Neoplasms/pathology , Breast Neoplasms/radiotherapy , Lymphatic Metastasis/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Axilla , Breast Neoplasms/diagnostic imaging , Cone-Beam Computed Tomography , Female , Humans , Lymph Nodes , Lymphatic Metastasis/diagnostic imaging , Radiotherapy Dosage
5.
Radiother Oncol ; 133: 198-204, 2019 04.
Article in English | MEDLINE | ID: mdl-30448001

ABSTRACT

BACKGROUND AND PURPOSE: With the advent of automatic treatment planning options like Pinnacle's Autoplanning (PAP), the challenge arises how to assess the quality of a plan that no dosimetrist did work on. The aim of this study was to assess plan quality consistency of PAP prostate cancer patients in clinical practice. MATERIALS AND METHODS: 100 prostate cancer patients were included from NKI and 129 from RadboudUMC (RUMC). Per institute a previously developed [1] treatment planning QA model, based on overlap volume histograms, was trained on PAP plans to predict achievable dose metrics which were then compared to the clinical PAP plans. A threshold of 3 Gy (DVH dose parameters)/3% (DVH volume parameters) was used to detect outliers. For the outlier plans, the PAP technique was adjusted with the aim of meeting the threshold. RESULTS: The average difference between the prediction and the clinically achieved value was <0.5 Gy (mean dose parameters) and <1.2% (volume parameters), with standard deviation of 1.9 Gy/1.5% respectively. We found 8% (NKI)/25% (RUMC) of patients to exceed the 3 Gy/3% threshold, with deviations up to 6.7 Gy (mean dose rectum) and 6% (rectal wall V64Gy). In all cases the plans could be improved to fall within the thresholds, without compromising the other dose metrics. CONCLUSION: Independent treatment planning QA was used successfully to assess the quality of clinical PAP in a multi-institutional setting. Respectively 8% and 25% suboptimal clinical PAP plans were detected that all could be improved with replanning. Therefore we recommend the use of independent treatment plan QA in combination with PAP for prostate cancer patients.


Subject(s)
Prostatic Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Humans , Knowledge Bases , Male , Prostatic Neoplasms/diagnostic imaging , Radiotherapy Dosage , Rectum/diagnostic imaging , Rectum/radiation effects
6.
Phys Rev Lett ; 117(19): 198002, 2016 Nov 04.
Article in English | MEDLINE | ID: mdl-27858450

ABSTRACT

We evidence critical fluctuations in the strain rate of granular flows that are weakly vibrated. Strikingly, the critical point arises at finite values of the mean strain rate and vibration strength, far from the yielding critical point at a zero flow rate. We show that the global rheology, as well as the amplitude and correlation time of the fluctuations, are consistent with a mean-field, Landau-like description, where the strain rate and the stress act as conjugated variables. We introduce a general model which captures the observed phenomenology and argue that this type of critical behavior generically arises when self-fluidization competes with friction.

7.
Article in English | MEDLINE | ID: mdl-26565148

ABSTRACT

We experimentally probe the anisotropy of weakly vibrated flowing granular media. Depending on the driving parameters-flow rate and vibration strength-this anisotropy varies significantly. We show how the anisotropy collapses when plotted as a function of the driving stresses, uncovering a direct link between stresses and anisotropy. Moreover, our data suggest that for small anisotropies, the shear stresses vanish. Anisotropy of the fabric of granular media thus plays a crucial role in determining the rheology of granular flows.

8.
Soft Matter ; 11(13): 2570-6, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25679351

ABSTRACT

In this paper we report experiments where we shear granular rods in split-bottom geometries, and find that a significant heap of height of least 40% of the filling height can form at the particle surface. We show that heaping is caused by a significant secondary flow, absent for spherical particles. Flow reversal transiently reverses the secondary flow, leading to a quick collapse and slower regeneration of the heap. We present a symmetry argument and experimental data that show that the generation of the secondary flow is driven by a misalignment of the mean particle orientation with the streamlines of the flow. This general mechanism is expected to be important in all flows of sufficiently anisometric grains.

9.
Article in English | MEDLINE | ID: mdl-24580217

ABSTRACT

We probe the rheology of weakly vibrated granular flows as function of flow rate, vibration strength, and pressure by performing experiments in a vertically vibrated split-bottom shear cell. For slow flows, we establish the existence of a vibration-dominated granular flow regime, where the driving stresses smoothly vanish as the driving rate is diminished. We distinguish three qualitatively different vibration-dominated rheologies, most strikingly a regime where the shear stresses no longer are proportional to the pressure.

10.
Phys Rev Lett ; 107(10): 108303, 2011 Sep 02.
Article in English | MEDLINE | ID: mdl-21981538

ABSTRACT

We establish that the rheological curve of dry granular media is nonmonotonic, both in the presence and absence of external mechanical agitations. In the presence of weak vibrations, the nonmonotonic flow curves govern a hysteretic transition between slow but steady and fast, inertial flows. In the absence of vibrations, the nonmonotonic flow curve governs the yielding behavior of granular media. Finally, we show that nonmonotonic flow curves can be seen in at least two different flow geometries and for several granular materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...