Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Artif Organs ; 34(4): 289-94, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20420610

ABSTRACT

In this study, the hypothesis was tested that a low-resistant, high-compliant oxygenator provides better pulse conductance and less hemolysis than a high-resistant, low-compliant oxygenator during pulsatile cardiopulmonary bypass. Forty adults undergoing coronary artery bypass surgery were randomly divided into two groups using either an oxygenator with a relatively low hydraulic resistance (Quadrox BE-HMO 2000, Maquet Cardiopulmonary AG, Hirrlingen, Germany) or with a relatively high hydraulic resistance (Capiox SX18, Terumo Cardiovascular Systems, Tokyo, Japan). The phase shift between the flow signals measured at the inlet and outlet of the oxygenator was used to assess compliance. Pulse conductance in terms of pressure attenuation was calculated by dividing the outlet pulse pressure of the oxygenator by the inlet pulse pressure. A normalized index was used to assess hemolysis. The phase shifts in time of the flow pulses were 36 +/- 6 ms in the low-resistant (high-compliant) oxygenator, and 14 +/- 2 ms in the high-resistant (low-compliant) oxygenator group (P < 0.001). The low-resistant, high-compliant oxygenator provided 27% better pulse conductance compared with the high-resistant, low-compliant oxygenator (0.84 +/- 0.02 and 0.66 +/- 0.01, respectively, P < 0.001). Inlet pulse pressures were significantly higher (29%) in the high-resistant, low-compliant (Capiox) group than in the low-resistant, high-compliant (Quadrox) group (838 +/- 38 mm Hg and 648 +/- 25 mm Hg respectively, P < 0.001), but no significant difference in hemolysis was found. A low-resistant, high-compliant oxygenator provides better pulse conduction than a high-resistant, low-compliant oxygenator. However, the study data could not confirm the association of high pressures with increased hemolysis.


Subject(s)
Cardiopulmonary Bypass/adverse effects , Cardiopulmonary Bypass/instrumentation , Coronary Artery Bypass/adverse effects , Coronary Artery Bypass/instrumentation , Hemolysis , Aged , Blood Pressure , Equipment Design , Female , Heart Rate , Humans , Male , Middle Aged , Oxygenators , Pulsatile Flow
2.
Artif Organs ; 32(7): 566-71, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18638312

ABSTRACT

Venous cannulae undergo continuous improvements to achieve better and safer venous drainage. Several cannula tests have been reported, though cannula performance during inlet obstruction has never been a test criterion. In this study, five different cannulae for proximal venous drainage were tested in a mock circulation that enabled measurement of hydraulic conductance after inlet obstruction by vessel collapse. Values for hydraulic conductance ranged from 1.11 x 10(-2) L/min/mm Hg for a Thin-Flex Single Stage Venous Cannula with an open-end lighthouse tip to 1.55 x 10(-2) L/min/mm Hg for a DLP VAD Venous Cannula featuring a swirled tip profile, showing a difference that amounts to nearly 40% of the lowest conductance value. Excessive venous drainage results in potentially dangerous high-negative venous line pressures independent of cannula design. Cannulatip design featuring swirled and grooved tip structures increases drainage capacity and enhances cannula performance during inlet obstruction.


Subject(s)
Catheterization, Central Venous/instrumentation , Drainage/methods , Extracorporeal Circulation/instrumentation , Equipment Design , Humans , Rheology
SELECTION OF CITATIONS
SEARCH DETAIL
...