Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Protein J ; 42(5): 490-501, 2023 10.
Article in English | MEDLINE | ID: mdl-37421557

ABSTRACT

HIV-1 protease is essential for the production of mature, infectious virions and is a major target in antiretroviral therapy. We successfully purified a HIV-1 subtype C variant, L38↑N↑L- 4, containing an insertion of asparagine and leucine at position 38 without the four background mutations - K20R, E35D, R57K, V82I using a modified purification protocol. Isothermal titration calorimetry indicated that 50% of the variant protease sample was in the active conformation compared to 62% of the wild type protease. The secondary structure composition of the variant protease was unaffected by the double insertion. The specific activity and kcat values of the variant protease were approximately 50% lower than the wild type protease values. The variant protease also exhibited a 1.6-fold increase in kcat/KM when compared to the wild type protease. Differential scanning calorimetry showed a 5 °C increase in Tm of the variant protease, indicating the variant was more stable than the wild type. Molecular dynamics simulations indicated the variant was more stable and compact than the wild type protease. A 3-4% increase in the flexibility of the hinge regions of the variant protease was observed. In addition, increased flexibility of the flaps, cantilever and fulcrum regions of the variant protease B chain was observed. The variant protease sampled only the closed flap conformation indicating a potential mechanism for drug resistance. The present study highlights the direct impact of a double amino acid insertion in hinge region on enzyme kinetics, conformational stability and dynamics of an HIV-1 subtype C variant protease.


Subject(s)
HIV Protease , Molecular Dynamics Simulation , HIV Protease/genetics , Kinetics , Mutation , Molecular Conformation , Drug Resistance, Viral
2.
STAR Protoc ; 4(1): 102095, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36853663

ABSTRACT

Conventional methods of measuring affinity are limited by artificial immobilization, large sample volumes, and homogeneous solutions. This protocol describes microfluidic antibody affinity profiling on complex human samples in solution to obtain a fingerprint reflecting both affinity and active concentration of the target protein. To illustrate the protocol, we analyze the antibody response in SARS-CoV-2 omicron-naïve samples against different SARS-CoV-2 variants of concern. However, the protocol and the technology are amenable to a broad spectrum of biomedical questions. For complete details on the use and execution of this protocol, please refer to Emmenegger et al. (2022),1 Schneider et al. (2022),2 and Fiedler et al. (2022).3.


Subject(s)
COVID-19 , Humans , Antibody Affinity , Microfluidics , SARS-CoV-2
3.
J Mol Recognit ; 36(2): e2996, 2023 02.
Article in English | MEDLINE | ID: mdl-36175369

ABSTRACT

Chloride intracellular channel proteins (CLICs) display ubiquitous expression, with each member exhibiting specific subcellular localisation. While all CLICs, except CLIC3, exhibit a highly conserved putative nuclear localisation sequence (NLS), only CLIC1, CLIC3 and CLIC4 exist within the nucleus. The CLIC4 NLS, 199-KVVAKKYR-206, appears crucial for nuclear entry and interacts with mouse nuclear import mediator Impα isoform 1, omitting the IBB domain (mImpα1ΔIBB). The essential nature of the basic residues in the CLIC4 NLS has been established by the fact that mutating out these residues inhibits nuclear import, which in turn is linked to cutaneous squamous cell cancer. Given the conservation of the CLIC NLS, CLIC1 likely follows a similar import pathway to CLIC4. Peptides of the CLIC1 (Pep1; Pep1_S C/S mutant) and CLIC4 (Pep4) NLSs were designed to examine binding to human Impα isoform 1, omitting the IBB domain (hImpα1ΔIBB). Molecular docking indicated that the core CLIC NLS region (KKYR) forms a similar binding pattern to both mImpα1ΔIBB and hImpα1ΔIBB. Fluorescence quenching demonstrated that Pep1_S (Kd ≈ 237 µM) and Pep4 (Kd ≈ 317 µM) bind hImpα1ΔIBB weakly. Isothermal titration calorimetry confirmed the weak binding interaction between Pep4 and hImpα1ΔIBB (Kd ≈ 130 µM) and the presence of a proton-linked effect. This weak interaction may be due to regions distal from the CLIC NLS needed to stabilise and strengthen hImpα1ΔIBB binding. Additionally, this NLS may preferentially bind another hImpα isoform with different flexibility properties.


Subject(s)
Chlorides , alpha Karyopherins , Animals , Mice , Humans , Active Transport, Cell Nucleus , alpha Karyopherins/chemistry , alpha Karyopherins/metabolism , Chlorides/metabolism , Amino Acid Sequence , Molecular Docking Simulation , Cell Nucleus/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Chloride Channels/genetics , Chloride Channels/metabolism
4.
Adv Exp Med Biol ; 1371: 79-108, 2022.
Article in English | MEDLINE | ID: mdl-34351572

ABSTRACT

HIV protease plays a critical role in the life cycle of the virus through the generation of mature and infectious virions. Detailed knowledge of the structure of the enzyme and its substrate has led to the development of protease inhibitors. However, the development of resistance to all currently available protease inhibitors has contributed greatly to the decreased success of antiretroviral therapy. When therapy failure occurs, multiple mutations are found within the protease sequence starting with primary mutations, which directly impact inhibitor binding, which can also negatively impact viral fitness and replicative capacity by decreasing the binding affinity of the natural substrates to the protease. As such, secondary mutations which are located outside of the active site region accumulate to compensate for the recurrently deleterious effects of primary mutations. However, the resistance mechanism of these secondary mutations is not well understood, but what is known is that these secondary mutations contribute to resistance in one of two ways, either through increasing the energetic penalty associated with bringing the protease into the closed conformation, or, through decreasing the stability of the protein/drug complex in a manner that increases the dissociation rate of the drug, leading to diminished inhibition. As a result, the elasticity of the enzyme-substrate complex has been implicated in the successful recognition and catalysis of the substrates which may be inferred to suggest that the elasticity of the enzyme/drug complex plays a role in resistance. A realistic representation of the dynamic nature of the protease may provide a more powerful tool in structure-based drug design algorithms.


Subject(s)
HIV Infections , HIV Protease Inhibitors , Drug Resistance, Viral/genetics , Elasticity , HIV Infections/drug therapy , HIV Protease/chemistry , HIV Protease/genetics , HIV Protease/metabolism , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacology , HIV Protease Inhibitors/therapeutic use , Humans , Mutation
5.
J Mol Graph Model ; 106: 107931, 2021 07.
Article in English | MEDLINE | ID: mdl-34030114

ABSTRACT

The HIV-1 protease is an important drug target in antiretroviral therapy due to the crucial role it plays in viral maturation. A greater understanding of the dynamics of the protease as a result of drug-induced mutations has been successfully elucidated using computational models in the past. We performed induced-fit docking studies and molecular dynamics simulations on the wild-type South African HIV-1 subtype C protease and two non-active site mutation-containing protease variants; HP3 PR and HP4 PR. The HP3 PR contained the I13V, I62V, and V77I mutations while HP4 PR contained the same mutations with the addition of the L33F mutation. The simulations were initiated in a cubic cell universe containing explicit solvent, with the protease variants beginning in the fully closed conformation. The trajectory for each simulation totalled 50 ns. The results indicate that the mutations increase the dynamics of the flap, hinge, fulcrum and cantilever regions when compared to the wild-type protease while in complex with protease inhibitors. Specifically, these mutations result in the protease favouring the semi-open conformation when in complex with inhibitors. Moreover, the HP4 PR adopted curled flap tip conformers which coordinated several water molecules into the active site in a manner that may reduce inhibitor binding affinity. The mutations affected the thermodynamic landscape of inhibitor binding as there were fewer observable chemical contacts between the mutated variants and saquinavir, atazanavir and darunavir. These data help to elucidate the biophysical basis for the selection of cooperative non-active site mutations by the HI virus.


Subject(s)
HIV Protease Inhibitors , HIV Protease , Binding Sites , Catalytic Domain , Drug Resistance, Viral , HIV Protease/genetics , HIV Protease/metabolism , HIV Protease Inhibitors/pharmacology , Molecular Dynamics Simulation , Mutation
6.
Mol Biochem Parasitol ; 240: 111319, 2020 11.
Article in English | MEDLINE | ID: mdl-32961204

ABSTRACT

Schistosoma japonicum glutathione transferase (Sj26GST), an enzyme central to detoxification of electrophilic compounds in the parasite, is upregulated in response to drug treatment. Therefore, Sj26GST may serve as a potential therapeutic target for the treatment of schistosomiasis. Herewith, we describe the structural basis of inhibition of Sj26GST by ellagic acid (EA). Using 1-chloro-2,4-dinitrobenzene and reduced glutathione (GSH) as Sj26GST substrates, EA was shown to inhibit Sj26GST activity by 66 % with an IC50 of 2.4 µM. Fluorescence spectroscopy showed that EA altered the polarity of the environment of intrinsic tryptophan and that EA decreased (in a dose-dependent manner) the interaction between Sj26GST and 8-Anilino-1-naphthalenesulfonate (ANS), which is a known GST H-site ligand. Thermodynamic studies indicated that the interaction between Sj26GST and EA is spontaneous (ΔG = -29.88 ± 0.07 kJ/mol), enthalpically-driven (ΔH = -9.48 ± 0.42 kJ/mol) with a favourable entropic change (ΔS = 20.40 ± 0.08 kJ/mol/K), and with a stoichiometry of four EA molecules bound per Sj26GST dimer. The 1.53 Å-resolution Sj26GST crystal structure (P 21 21 21 space group) complexed with GSH and EA shows that EA binds primarily at the dimer interface, stabilised largely by Van der Waal forces and H-bonding. Besides, EA bound near the H-site and less than 3.5 Å from the ε-NH2 of the γ-glutamyl moiety of GSH, in each subunit.


Subject(s)
Enzyme Inhibitors/chemistry , Glutathione Transferase/chemistry , Helminth Proteins/chemistry , Schistosoma japonicum/enzymology , Animals , Calorimetry , Chemical Phenomena , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Glutathione Transferase/antagonists & inhibitors , Helminth Proteins/antagonists & inhibitors , Kinetics , Ligands , Models, Molecular , Molecular Conformation , Molecular Structure , Protein Binding , Schistosoma japonicum/drug effects , Structure-Activity Relationship , Thermodynamics
7.
Curr Protoc Protein Sci ; 100(1): e106, 2020 06.
Article in English | MEDLINE | ID: mdl-32339408

ABSTRACT

Heterologous expression of exogenous proteases in Escherichia coli often results in the formation of insoluble inclusion bodies. When sequestered into inclusion bodies, the functionality of the proteases is minimized. To be characterized structurally and functionally, however, proteases must be obtained in their native conformation. HIV protease is readily expressed as inclusion bodies, but must be recovered from the inclusion bodies. This protocol describes an efficient method for recovering HIV protease from inclusion bodies, as well as refolding and purifying the protein. HIV protease-containing inclusion bodies are treated with 8 M urea and purified via cation-exchange chromatography. Subsequent refolding by buffer exchange via dialysis and further purification by anion-exchange chromatography produces highly pure HIV protease that is functionally active. © 2020 by John Wiley & Sons, Inc. Basic Protocol: Recovery, refolding, and purification of HIV protease from inclusion bodies Support Protocol 1: Expression and extraction of inclusion bodies containing HIV protease expressed in Escherichia coli Support Protocol 2: Determination of the active site concentration of HIV protease via isothermal titration calorimetry.


Subject(s)
HIV Protease , HIV-1 , Inclusion Bodies/chemistry , Protein Folding , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , HIV Protease/biosynthesis , HIV Protease/chemistry , HIV Protease/genetics , HIV Protease/isolation & purification , HIV-1/enzymology , HIV-1/genetics , Humans , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...