Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 11(4)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923736

ABSTRACT

A novel approach of the deposition of two-component coating consisting of TiO2 and CuO on polymer membranes by MS-PVD method was presented in this work. This confirmed the possibility of using thin functional coatings for the modification of polymer membranes. The influence of technological parameters of the coating deposition on the membrane's structure, chemical composition and functional properties (hydrophilic, photocatalytic and bactericidal properties) were analyzed using SEM. Model microorganism such as Escherichia coli and Bacillus subtilis have been used to check the antibacterial properties. The results indicated that doping with CuO highlights the potential of bactericidal efficiency. The surface properties of the membranes were evaluated with the surface free energy. For evaluating photocatalytic properties, the UV and visible light were used. The filtration tests showed that polymer membranes treated with two-component TiO2 + CuO coatings have a permeate flux similar to the reference material (non-coated membrane). The obtained results constitute a very promising perspective of the potential application of magnetron sputtering for deposition of TiO2 + CuO coatings in the prevention of biofouling resulted from the membrane filtration of dairy wastewater.

2.
Membranes (Basel) ; 10(6)2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32604751

ABSTRACT

Microfiltration (MF) membranes have been widely used for the separation and concentration of various components in food processing, biotechnology and wastewater treatment. The deposition of components from the feed solution and accumulation of bacteria on the surface and in the membrane matrix greatly reduce the effectiveness of MF. This is due to a decrease in the separation efficiency of the membrane, which contributes to a significant increase in operating costs and the cost of exploitative parts. In recent years, significant interest has arisen in the field of membrane modifications to make their surfaces resistant to the deposition of components from the feed solution and the accumulation of bacteria. The aim of this work was to develop appropriate process parameters for the plasma surface deposition of silver oxide (AgO) on MF polyamide membranes, which enables the fabrication of filtration materials with high permeability and antibacterial properties.

3.
Polymers (Basel) ; 13(1)2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33396349

ABSTRACT

In this work, the authors present the possibility of modification of polymer membranes by TiO2 + AgO coating created by the magnetron sputtering method. The two-component TiO2 + AgO coating can improve and shape new functional properties such as bactericidal and photocatalytic properties. The influence of magnetron power changes on the structure of the membrane was investigated as well. The structure and elemental composition of TiO2 + AgO coatings were analyzed using SEM and EDS technique. All deposited coatings caused a total inhibition of the growth of two investigated colonies of Escherichia coli and Bacillus subtilis on the surface. The photocatalytic properties for membranes covered with oxide coatings were tested under UV irradiation and visible light. The filtration result show that polymer membranes covered with two-component TiO2 + AgO coatings have a permeate flux similar to the non-coated membranes.

SELECTION OF CITATIONS
SEARCH DETAIL
...