Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 11160, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34045648

ABSTRACT

An optical fibre sensor based on radioluminescence, using the scintillation material terbium doped gadolinium oxysulphide (Gd2O2S:Tb) is evaluated, using a 3D printed anthropomorphic phantom for applications in low dose-rate (LDR) prostate brachytherapy. The scintillation material is embedded in a 700 µm diameter cavity within a 1 mm plastic optical fibre that is fixed within a brachytherapy needle. The high spatial resolution dosimeter is used to measure the dose contribution from Iodine-125 (I-125) seeds. Initially, the effects of sterilisation on the sensors (1) repeatability, (2) response as a function of angle, and (3) response as a function of distance, are evaluated in a custom polymethyl methacrylate phantom. Results obtained in this study demonstrate that the output response of the sensor, pre- and post-sterilisation are within the acceptable measurement uncertainty ranging from a maximum standard deviation of 4.7% pre and 5.5% post respectively, indicating that the low temperature sterilisation process does not damage the sensor or reduce performance. Subsequently, an LDR brachytherapy plan reconstructed using the VariSeed treatment planning system, in an anthropomorphic 3D printed training phantom, was used to assess the suitability of the sensor for applications in LDR brachytherapy. This phantom was printed based on patient anatomy, with the volume and dimensions of the prostate designed to represent that of the patient. I-125 brachytherapy seeds, with an average activity of 0.410 mCi, were implanted into the prostate phantom under trans-rectal ultrasound guidance; following the same techniques as employed in clinical practice by an experienced radiation oncologist. This work has demonstrated that this sensor is capable of accurately identifying when radioactive I-125 sources are introduced into the prostate via a brachytherapy needle.


Subject(s)
Brachytherapy/methods , Optical Fibers , Prostatic Neoplasms/radiotherapy , Humans , Iodine Radioisotopes/therapeutic use , Male , Printing, Three-Dimensional , Radiotherapy Dosage , Ultrasonography, Interventional
2.
Biomed Opt Express ; 11(7): 4027-4036, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-33014583

ABSTRACT

An optical fiber sensor for monitoring low dose radiation is presented. The sensor, based on radiation sensitive scintillation material, terbium doped gadolinium oxysulphide (Gd2O2S:Tb), is embedded in a cavity of 700µm diameter within a 1mm plastic optical fiber. The sensor is compared with the treatment planning system for repeatability, angular dependency, distance and accumulated radiation activity. The sensor demonstrates a high sensitivity of 152 photon counts/Gy with a temporal resolution of 0.1 seconds, with the largest repeatability error of 4.1%, to 0.361mCi of Iodine-125 the radioactive source most commonly used in LDR brachytherapy for treating prostate cancer.

3.
Cancer Nanotechnol ; 7(1): 7, 2016.
Article in English | MEDLINE | ID: mdl-27818715

ABSTRACT

Review is made of dosimetric studies of current optical fibre technology in radiotherapy for therapeutic applications, focusing particularly on in vivo dosimetry for prostate radiotherapy. We present the various sensor designs along with the main advantages and disadvantages associated with this technology. Optical fibres are ideally placed for applications in radiotherapy dosimetry; due to their small size they are lightweight and immune to electromagnetic interferences. The small dimensions of optical fibres allows it to be easily guided within existing brachytherapy equipment; for example, within the seed implantation needle for direct tumour dose analysis, in the urinary catheter to monitor urethral dose, or within the biopsy needle holder of the transrectal ultrasound probe to monitor rectal wall dose. The article presents the range of optical fibre dosimeter designs along with the main dosimetric properties required for a modern in vivo dosimetry system to be utilised in a clinical environment.

4.
Br J Radiol ; 88(1050): 20140702, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25761212

ABSTRACT

This article presents an overview of the recent developments and requirements in radiotherapy dosimetry, with particular emphasis on the development of optical fibre dosemeters for radiotherapy applications, focusing particularly on in vivo applications. Optical fibres offer considerable advantages over conventional techniques for radiotherapy dosimetry, owing to their small size, immunity to electromagnetic interferences, and suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based dosemeters, together with being lightweight and flexible, mean that they are minimally invasive and thus particularly suited to in vivo dosimetry. This means that the sensor can be placed directly inside a patient, for example, for brachytherapy treatments, the optical fibres could be placed in the tumour itself or into nearby critical tissues requiring monitoring, via the same applicators or needles used for the treatment delivery thereby providing real-time dosimetric information. The article outlines the principal sensor design systems along with some of the main strengths and weaknesses associated with the development of these techniques. The successful demonstration of these sensors in a range of different clinical environments is also presented.


Subject(s)
Optical Fibers/trends , Radiometry/instrumentation , Radiometry/trends , Radiotherapy , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...