Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Food Funct ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984454

ABSTRACT

Slow digestion of starch is linked to various health benefits. The impact of wheat particle size on in vitro starch digestibility and quality of wire-cut cookies was here evaluated by including four soft wheat fractions [i.e. flour (average diameter, 83 µm), fine farina (643 µm), coarse farina (999 µm) and bran (1036 µm)] in the recipe. The susceptibility of starch in these fractions to in vitro digestion decreased with increasing particle size, resulting in a 76% lower digestion rate for coarse farina than for flour as found with the single first-order kinetic model. Starch was protected from hydrolysis likely due to delayed diffusion of pancreatic α-amylase through the intact farina cell walls. When 20-65% starch in flour for the control cookie recipe was substituted with the same percentages in fine and coarse farina, the starch digestion rate decreased when substitution levels increased. A 62% lower digestion rate was found at 65% substitution with coarse farina. Cell wall intactness was largely preserved in the cookies and most of the starch appeared as ungelatinised granules. Further, the cookie spread ratio during baking was 48% and 33% higher and the cookies were 63% and 57% less hard than control cookies when made with 65% fine farina and 65% coarse farina, respectively. The relatively low specific surface area of large wheat particles resulted in low water absorption and less dense packing. In conclusion, encapsulation of starch by intact cell walls in coarse wheat fractions makes them promising ingredients when developing starchy food products for controlled energy release.

2.
Food Chem ; 455: 139877, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38824726

ABSTRACT

High-intensity ultrasonication is an emerging technology for plant protein isolation and modification. In this study, the potential of temperature-controlled ultrasonication to enhance the recovery of functional proteins from potato trimmings was assessed. Different ultrasound energy levels [2000-40,000 J/g fresh weight (FW)] were applied during protein extraction at pH 9.0. True protein yields after ultrasonication significantly increased (up to 91%) compared to conventional extraction (33%). Microstructural analysis of the extraction residues showed more disrupted cells as ultrasonication time increased. Ultrasound treatments (10,000 and 20,000 J/g FW) increased the protein yield without affecting the foaming and air-water interfacial properties of protein isolates obtained after isoelectric precipitation (pH 4.0). However, proteins obtained after extended ultrasonication (40,000 J/g FW) had significantly slower early-stage adsorption kinetics. This was attributed to ultrasound-induced aggregation of the protease inhibitor fraction. In conclusion, ultrasonication shows potential to help overcome some challenges associated with plant protein extraction.


Subject(s)
Plant Proteins , Solanum tuberosum , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Solanum tuberosum/chemistry , Sonication , Kinetics , Ultrasonics , Hydrogen-Ion Concentration
3.
Food Chem ; 450: 139301, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38613966

ABSTRACT

By-products from the potato processing industry, like potato trimmings, are sustainable sources of proteins. Here, a size-exclusion high performance liquid chromatography (SE-HPLC) method was applied to simultaneously determine the extractability and aggregation state of proteins from three batches of potato trimmings of different cultivars. Obtained SE-HPLC profiles allowed distinguishing between the patatin and protease inhibitor fractions of potato proteins. Moreover, only 75% of the crude proteins could be extracted in phosphate buffer containing sodium dodecyl sulfate and a reducing agent, indicating the presence of physical extraction barriers. Ball milling for 5 min significantly increased protein extractability, but prolonged treatment resulted in aggregation of native patatin and a reduced protein extractability. Microwave-dried trimmings had a lower protein extractability than freeze-dried trimmings. In future research, the SE-HPLC method can be used to examine changes in potato protein (fractions) as a result of processing.


Subject(s)
Plant Proteins , Solanum tuberosum , Solanum tuberosum/chemistry , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Chromatography, High Pressure Liquid , Plant Tubers/chemistry , Food Handling , Plant Extracts/chemistry , Plant Extracts/isolation & purification
4.
J Food Sci ; 89(2): 925-940, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38235999

ABSTRACT

Soy protein concentrates (SPCs) are common food ingredients. They typically contain 65% (w/w) protein and ∼30% (w/w) carbohydrate. SPCs can be obtained with various protein precipitation conditions. A systematic study of the impact of these different protein precipitation protocols on the SPC protein composition and physical properties is still lacking. Here, SPCs were prepared via three different protocols, that is, isoelectric (pH 3.5-5.5), aqueous ethanol (50%-70% [v/v]), and Ca2+ ion (5-50 mM) based precipitations, and analyzed for (protein) composition, protein thermal properties, dispersibility, and water-holding capacity. SPCs precipitated at pH 5.5 or by adding 15 mM Ca2+ ions had a lower 7S/11S globulin ratio (∼0.40) than that (∼0.50) of all other SPC samples. Protein in SPCs obtained by isoelectric precipitation denatured at a significantly higher temperature than those in ethanol- or Ca2+ -precipitated SPCs. Precipitation with 50%-60% (v/v) ethanol resulted in pronounced denaturation of 2S albumin and 7S globulin fractions in SPCs. Additionally, increasing the precipitation pH from 3.5 to 5.5 and increasing the Ca2+ ion concentration from 15 to 50 mM caused a strong decrease of both the dispersibility of the protein in SPC and its water-holding capacity at pH 7.0. In conclusion, this study demonstrates that the SPC production process can be directed to obtain ingredients with versatile protein physicochemical properties toward potential food applications. PRACTICAL APPLICATION: This study demonstrates that applying different protein precipitation protocols allows obtaining SPCs that vary widely in (protein) composition and physical properties (such as protein dispersibility and water-holding capacity). These varying traits can greatly influence the suitability of SPCs as functional ingredients for specific applications, such as the production of food foams, emulsions, gels, and plant-based meat alternatives. The generated knowledge may allow targeted production of SPCs for specific applications.


Subject(s)
Globulins , Soybean Proteins , Soybean Proteins/chemistry , Hydrogen-Ion Concentration , Globulins/chemistry , Water , Ethanol
5.
Crit Rev Food Sci Nutr ; : 1-19, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37203963

ABSTRACT

To achieve a more sustainable global food production, a shift from animal to plant protein based food is necessary. At the same time, these plant proteins are preferentially derived from side-streams of industrial processes. Wheat bran and germ represent two major side-streams of the wheat milling industry, and contain aqueous-phase soluble proteins with a well-balanced amino acid composition. To successfully use wheat bran and germ proteins in novel plant-based liquid and semi-solid foods, they need to (i) be rendered extractable and (ii) contribute functionally to stabilizing the food system. Prior heat treatment and the occurrence of intact cell walls are important barriers in this regard. Several strategies have been applied to overcome these issues, including physical processing and (bio)chemical modification. We here present a comprehensive, critical overview of the aqueous-phase extraction of protein from (modified) wheat bran and germ. Moreover, we discuss the functionality of the extracted protein, specifically in the context of liquid (foam- and emulsion-type) and semi-solid (gel-type) food applications. In each section, we identify important knowledge gaps and highlight several future prospects that could further increase the application potential of wheat bran and germ proteins in the food industry.

6.
Compr Rev Food Sci Food Saf ; 22(3): 1517-1554, 2023 05.
Article in English | MEDLINE | ID: mdl-36815740

ABSTRACT

A shift from animal protein- to plant protein-based foods is crucial in transitioning toward a more sustainable global food system. Among food products typically stabilized by animal proteins, food foams represent a major category. Wheat proteins are ubiquitous and structurally diverse, which offers opportunities for exploiting them for food foam and air-water interface stabilization. Notably, they are often classified into those that are soluble in aqueous systems (albumins and globulins) and those that are not (gliadins and glutenins). However, gliadins are at least to an extent water extractable and thus surface active. We here provide a comprehensive overview of studies investigating the air-water interfacial and foaming properties of the different wheat protein fractions. Characteristics in model systems are related to the functional role that wheat proteins play in gas cell stabilization in existing wheat-based foods (bread dough, cake batter, and beer foam). Still, to further extend the applicability of wheat proteins, and particularly the poorly soluble glutenins, to other food foams, their modification is required. Different physical, (bio)chemical, and other modification strategies that have been utilized to alter the solubility and therefore the air-water interfacial and foaming properties of the gluten protein fraction are critically reviewed. Such approaches may open up new opportunities for the application of (modified) gluten proteins in other food products, such as plant-based meringues, whippable drinks, or ice cream. In each section, important knowledge gaps are highlighted and perspectives for research efforts that could lead to the rational design of wheat protein systems with enhanced functionality and overall an increased applicability in food industry are proposed.


Subject(s)
Triticum , Water , Animals , Triticum/chemistry , Water/chemistry , Gliadin/chemistry , Gliadin/metabolism , Plant Proteins , Bread
7.
Food Res Int ; 163: 112177, 2023 01.
Article in English | MEDLINE | ID: mdl-36596119

ABSTRACT

The functional properties of soy protein isolates (SPIs), which are crucial for their successful use in food applications, depend on their protein physical properties and composition. Although the production process of SPIs is well-known and established industrial practice, fundamental knowledge on how the different isolation steps and varying isolation conditions influence these properties is lacking. Here, these characteristics were systematically investigated by assessing the impacts of the various steps of a conventional isoelectric precipitation based SPI production protocol. Protein denaturation and colloidal state were evaluated with differential scanning calorimetry and dynamic light scattering combined with (ultra)centrifugation, respectively. The protein composition (on protein subunit level) was assessed via size-exclusion chromatography. Hexane defatting was found not to cause protein denaturation. Alkaline extraction at pH values between 7.0 and 9.0 resulted in no differences in protein physical properties or composition. Subsequent acid precipitation at pH 5.5 resulted in SPIs with a lower 7S/11S ratio and higher protein solubility at neutral pH than when produced at pH 4.5 and 3.5. SPIs obtained at all evaluated precipitation pH values contained a considerable amount of aggregated protein structures. Spray-drying of SPI did not result in a higher degree of protein denaturation or in a loss of protein solubility compared to freeze-drying, but a smaller amount of soluble aggregates was observed in spray-dried SPIs. Hence, alterations in the isolation procedure can result in SPIs with moderately different physical properties and protein composition, which might lead to different functional properties and thus applicabilities in certain food systems.


Subject(s)
Desiccation , Soybean Proteins , Soybean Proteins/chemistry , Solubility , Hydrogen-Ion Concentration , Freeze Drying
8.
J Agric Food Chem ; 70(34): 10604-10610, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35977412

ABSTRACT

To enable its structural characterization by nuclear magnetic resonance (NMR) spectroscopy, the native structure of cereal water-unextractable arabinoxylan (WU-AX) is typically disrupted by alkali or enzymatic treatments. Here, WU-AX in the wheat flour unextractable cell wall material (UCWM) containing 40.9% ± 1.5 arabinoxylan with an arabinose-to-xylose ratio of 0.62 ± 0.04 was characterized by high-resolution solid-state NMR without disrupting its native structure. Hydration of the UCWM (1.7 mg H2O/mg UCWM) in combination with specific optimizations in the NMR methodology enabled analysis by solid-state 13C NMR with magic angle spinning and 1H high-power decoupling (13C HPDEC MAS NMR) which provided sufficiently high resolution to allow for carbon atom assignments. Spectral resonances of C-1 from arabinose and xylose residues of WU-AX were here assigned to the solid state. The proportions of un-, mono-, and di-substituted xyloses were 59.2, 19.5, and 21.2%, respectively. 13C HPDEC MAS NMR showed the presence of solid-state fractions with different mobilities in the UCWM. This study presents the first solid-state NMR spectrum of wheat WU-AX with sufficient resolution to enable assignment without prior WU-AX solubilization.


Subject(s)
Flour , Triticum , Arabinose/analysis , Cell Wall/chemistry , Flour/analysis , Magnetic Resonance Spectroscopy , Triticum/chemistry , Water/chemistry , Xylans/chemistry , Xylose
9.
Food Chem ; 386: 132831, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35509165

ABSTRACT

Aqueous phase extractable proteins from wheat can play a functional role in foods requiring interfacial stabilization. We here investigated the (protein) composition of aqueous flour extracts from wheats grown at different nitrogen (N) fertilization levels and studied their air-water interfacial characteristics. An important finding was that α- and γ-gliadins were extracted from wheat flour with water, even to an extent that they in the present work comprised 62-71% of the extract proteins. Application of N fertilization during wheat cultivation led to flour extracts with higher foam stabilities and air-water interface dilatational moduli. In all cases, proteins were found to most likely be the dominant constituent at the air-water interface. Analysis of foam protein compositions revealed an enrichment of proteins with molecular weights matching those of α- and γ-gliadins. It thus seems that gliadins can to a large extent determine the foaming characteristics of aqueous wheat flour extracts.


Subject(s)
Flour , Triticum , Fertilization , Flour/analysis , Gliadin , Nitrogen/analysis , Plant Extracts , Water
10.
Compr Rev Food Sci Food Saf ; 20(4): 3881-3917, 2021 07.
Article in English | MEDLINE | ID: mdl-34056854

ABSTRACT

Proper gas cell stability during fermentation and baking is essential to obtain high-quality bread. Gas cells in wheat dough are stabilized by the gluten network formed during kneading and, from the moment this network locally ruptures, by liquid films containing nonstarch polysaccharides (NSPs) and surface-active proteins and lipids. Dough liquor (DL), the supernatant after ultracentrifugation of dough, is a model system for these liquid films and has been extensively studied mostly in the context of wheat bread making. Nonwheat breads are often of lower quality (loaf volume and crumb structure) than wheat breads because their doughs/batters lack a viscoelastic wheat gluten network. Therefore, gas cell stabilization by liquid film constituents may be more important in nonwheat than in wheat bread making. This manuscript aims to review the knowledge on DL/batter liquor (BL) and its relevance for studying gas cell stabilization in wheat and nonwheat (rye and oat) bread making. To this end, the unit operations in wheat, rye, and oat bread making are described with emphasis on gas incorporation and gas cell (de)stabilization. A discussion of the knowledge on the recoveries and chemical structures of proteins, lipids, and NSPs in DLs/BLs is provided and key findings of studies dealing with foaming and air-water interfacial properties of DL/BL are discussed. Next, the extent to which DL/BL functionality can be related to bread properties is addressed. Finally, the extent to which DL/BL is a representative model system for the aqueous phase of dough/batter is discussed and related to knowledge gaps and further research opportunities.


Subject(s)
Bread , Triticum , Avena , Secale , Water
11.
J Agric Food Chem ; 69(13): 3912-3922, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33780246

ABSTRACT

The structural heterogeneity of water-extractable arabinoxylan (WE-AX) impacts wheat flour functionality. 1H diffusion-ordered (DOSY) nuclear magnetic resonance (NMR) spectroscopy revealed structural heterogeneity within WE-AX fractions obtained via graded ethanol precipitation. Combination with high-resolution 1H-1H correlation NMR spectroscopy (COSY) allowed identifying the relationship between the xylose substitution patterns and diffusion properties of the subpopulations. WE-AX fractions contained distinct subpopulations with different diffusion rates. WE-AX subpopulations with a high self-diffusivity contained high levels of monosubstituted xylose. In contrast, those with a low self-diffusivity were rich in disubstituted xylose, suggesting that disubstitution mainly occurs in WE-AX molecules with large hydrodynamic volumes. In general, WE-AX fractions precipitating at higher and lower ethanol concentrations had higher and lower self-diffusivity and more and less complex substitution patterns. Although 1H DOSY NMR, as performed in this study, was valuable for elucidating WE-AX structural heterogeneity, physical limitations arose when studying WE-AX populations with high molecular weight dispersions.


Subject(s)
Flour , Triticum , Flour/analysis , Magnetic Resonance Spectroscopy , Water , Xylans
12.
Food Chem ; 319: 126565, 2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32169767

ABSTRACT

Bread is mainly made from wheat but also from other cereals such as rye and oats. We here report on the role of dough liquor (DL) proteins and lipids in determining the stability of gas cell air-water (A-W) interfaces in wheat, rye, and oat bread making. Surprisingly, most lipids in DLs of these cereals are nonpolar. Their main polar DL lipids are phospholipids. Lipids at wheat and rye DL stabilized A-W interfaces impair interactions between its proteins, as reflected by an increased A-W interfacial shear viscosity of the adsorbed film upon defatting. In contrast, removing most lipids from oat DL pronouncedly increased the A-W interface surface tension, demonstrating that lipids are the prominent adsorbed species.


Subject(s)
Avena/chemistry , Lipids/chemistry , Secale/chemistry , Triticum/chemistry , Bread/analysis , Phase Transition , Surface Tension , Viscosity , Water/chemistry
13.
Food Res Int ; 116: 925-931, 2019 02.
Article in English | MEDLINE | ID: mdl-30717025

ABSTRACT

Gradientless baking by means of ohmic heating was used for the first time in gluten-free (GF) bread making. Combination thereof with in-line measurements of batter height, viscosity and carbon dioxide (CO2) release proved to be powerful for studying structure formation in GF breads. GF breads studied here were based on (i) a mixture of potato and cassava starches and egg white powder (C/P-S+EW), (ii) rice flour (RF) or (iii) a mixture of RF and egg white powder (RF+EW). The work revealed that bread volume and crumb structure rely heavily on the balance between the moment of CO2 release from batter during baking and that of crumb setting. At the moment of CO2 release, C/P-S+EW bread crumb had already (partly) set, while this was not the case for RF bread crumb, resulting in a collapse and thus low volume of the latter. When a part of RF was replaced by egg white powder, the moment of CO2 release was postponed and the batter collapse was less pronounced, leading to a higher volume and a finer crumb. The presence of egg white proteins in C/P-S+EW or RF+EW batters improved gas cell stabilization. Thus, increasing batter stability or altering the moment of crumb setting results in GF breads with higher volume and a finer crumb structure.


Subject(s)
Bread/analysis , Cooking/instrumentation , Diet, Gluten-Free , Electric Impedance , Carbon Dioxide/analysis , Egg Proteins, Dietary/analysis , Equipment Design , Fermentation , Hot Temperature , Manihot , Oryza , Solanum tuberosum , Starch/analysis , Viscosity , Water/analysis
14.
Food Res Int ; 112: 299-311, 2018 10.
Article in English | MEDLINE | ID: mdl-30131141

ABSTRACT

Although wheat endogenous lipids strongly impact bread quality, knowledge on their detailed distribution throughout the different stages of straight dough bread making is lacking. We here compared the lipid populations in hexane [containing free lipids (FLs)] and water-saturated butanol extracts [containing bound lipids (BLs)] of wheat flour, freshly mixed and fermented doughs, and bread crumb using high-performance liquid-chromatography [for nonpolar lipids, i.e. mainly free fatty acids (FFA) and triacylglycerols] and electrospray ionization tandem mass spectrometry (for polar lipids). Freshly mixed doughs had lower FL and higher BL levels than flour, a phenomenon referred to as lipid-binding. Furthermore, probably due to the disintegration of flour particles, the overall extractability of nonpolar lipids was higher in freshly mixed dough than in flour. Dough fermentation decreased the extractability of glycolipids, but increased that of nonpolar lipids and phospholipids. We hypothesize that these phenomena result from stretching of the gluten network due to gas cell expansion, which leads to the replacement of some lipids associated with gluten proteins by others. Baking increased the extractability of bound lysophospatidylcholine (LPC) levels, but decreased that of free FFA. This is probably due to in situ dissociation of amylose-LPC inclusion complexes and formation of amylose-FFA inclusion complexes during bread baking and cooling, respectively. The approach and ESI-MS/MS methodology we developed provided valuable insights regarding the distribution of lipids at the different stages of bread making. Hence, it opens perspectives for future efforts to relate differences in lipid composition between wheat cultivars to their bread making quality.


Subject(s)
Bread/analysis , Flour/analysis , Food Handling/methods , Lipids/analysis , Triticum/chemistry , Bread/microbiology , Chromatography, High Pressure Liquid , Cooking/methods , Fermentation , Food Microbiology/methods , Hot Temperature , Light , Saccharomyces cerevisiae/chemistry , Scattering, Radiation , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
15.
J Food Sci ; 83(8): 2119-2126, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30035322

ABSTRACT

There is a growing interest in substituting animal proteins with plant protein sources in food systems. A notable example is the replacement of hen egg white (EW) protein, which is used in a wide range of food products because of its excellent foaming characteristics. Here, enzymatically hydrolyzed wheat gluten, which has greater solubility and better foaming properties than wheat gluten itself, was prepared and incorporated in a classical meringue recipe to investigate its potential as a foaming agent. Meringues based on gluten hydrolysates (GHs) had batters with lower density and greater apparent viscosity than those based solely on EW protein. Furthermore, after baking, these GH containing meringues had greater specific volume than those based on EW protein alone and no notable differences in color or texture between the different samples were noted. These outcomes were related to basic insights in the air-water interfacial behavior of GHs obtained in earlier studies. More specifically, the greater foaming capacity of GH than of EW protein solutions was related to their superior meringue batter (density and apparent viscosity) and product (specific volume) properties. While EW protein solutions had better foam stability than GH solutions (in the absence of sugar), this was apparently less relevant for meringue properties, probably due to the very high viscosity of the sugar rich batter, which could obscure differences in the intrinsic foam stabilizing ability of the samples. PRACTICAL APPLICATION: Replacing animal proteins with plant protein sources in the food industry is desirable from an economic and environmental perspective. Enzymatic hydrolysis serves as a tool to improve the foaming properties of water-insoluble wheat gluten proteins. We conclude that wheat gluten hydrolysates can be a valid functional alternative for egg white proteins in meringues, and possibly other food systems.


Subject(s)
Cooking/methods , Glutens/chemistry , Glutens/metabolism , Triticum/chemistry , Animals , Chemical Phenomena , Egg Proteins/chemistry , Food , Food Industry/methods , Hydrolysis , Plant Proteins , Solubility , Surface-Active Agents , Viscosity , Water
16.
Food Chem ; 264: 126-134, 2018 Oct 30.
Article in English | MEDLINE | ID: mdl-29853356

ABSTRACT

Gas cell stabilization in dough by its aqueous phase constituents is arguably more important in non-wheat than in wheat dough due to weaker protein networks in the former. Dough liquor (DL), a model for the dough aqueous phase, was isolated from fermented wheat, rye, barley, and oat doughs by ultracentrifugation. DL composition (protein, lipid, arabinoxylan, ß-glucan) and air/water interfacial functionality [foaming, viscosity, surface tension, surface dilatational modulus (E)] were related to bread quality. Poor foaming and low E of wheat DL were ascribed to lipids and proteins co-occurring at the interface. Nonetheless, the presence of a gluten network resulted in high-quality wheaten breads. Homogeneous and heterogeneous crumb structures of rye and barley breads, respectively, were attributed to high and low E values of their respective DLs. High lipid content and low surface tension of oat DL indicated a lipid-dominated interface, which may explain the heterogeneous crumb structure of oat breads.


Subject(s)
Avena/chemistry , Bread , Hordeum/chemistry , Secale/chemistry , Triticum/chemistry , Avena/metabolism , Fermentation , Glutens/chemistry , Hordeum/metabolism , Lipids/analysis , Secale/metabolism , Triticum/metabolism , Ultracentrifugation , Viscosity , Water/chemistry , Xylans/analysis , Xylans/metabolism , beta-Glucans/analysis , beta-Glucans/metabolism
17.
J Agric Food Chem ; 65(6): 1263-1271, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28125223

ABSTRACT

The relationship between structural and foaming properties of two tryptic and two peptic wheat gluten hydrolysates was studied at different pH conditions. The impact of pH on foam stability (FS) of the samples heavily depended on the peptidase used and the degree of hydrolysis reached. Surface dilatational moduli were in most, but not all, instances related to FS, implying that, although the formation of a viscoelastic protein hydrolysate film is certainly important, this is not the only phenomenon that determines FS. In contrast to what might be expected, surface charge was not a major factor contributing to FS, except when close to the point-of-zero-charge. Surface hydrophobicity and intrinsic fluorescence measurements suggested that changes in protein conformation take place when the pH is varied, which can in turn influence foaming. Finally, hydrolyzed gluten proteins formed relatively large particles, suggesting that protein hydrolysate aggregation probably influences its foaming properties.


Subject(s)
Glutens/chemistry , Protein Hydrolysates/chemistry , Triticum/chemistry , Air , Dynamic Light Scattering , Fluorescence , Hydrogen-Ion Concentration , Hydrolysis , Hydrophobic and Hydrophilic Interactions , Particle Size , Protein Conformation , Solubility , Surface Properties , Tryptophan , Water/chemistry
18.
Colloids Surf B Biointerfaces ; 151: 295-303, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28040661

ABSTRACT

Enzymatic hydrolysis of wheat gluten protein improves its solubility and produces hydrolysates with foaming properties which may find applications in food products. First, we here investigated whether foam-liquid fractionation can concentrate wheat gluten peptides with foaming properties. Foam and liquid fractions had high and very low foam stability (FS), respectively. In addition, foam fractions were able to decrease surface tension more pronouncedly than un-fractionated samples and liquid fractions, suggesting they are able to arrange themselves more efficiently at an interface. As a second objective, foam fractionation served as a tool to study the structural properties of the peptides, causing these differences in air-water interfacial behavior. Zeta potential and surface hydrophobicity measurements did not fully explain these differences but suggested that hydrophobic interactions at the air-water interface are more important than electrostatic interactions. RP-HPLC showed a large overlap between foam and liquid fractions. However, a small fraction of very hydrophobic peptides with relatively high average molecular mass was clearly enriched in the foam fraction. These peptides were also more concentrated in un-fractionated DH 2 hydrolysates, which had high FS, than in DH 6 hydrolysates, which had low FS. These peptides most likely play a key role in stabilizing the air-water interface.


Subject(s)
Glutens/chemistry , Protein Hydrolysates/chemistry , Triticum/chemistry , Water/chemistry , Air , Animals , Chromatography, High Pressure Liquid , Enzymes/chemistry , Gastric Mucosa/metabolism , Hydrolysis , Hydrophobic and Hydrophilic Interactions , Oscillometry , Pepsin A/chemistry , Pressure , Static Electricity , Structure-Activity Relationship , Surface Properties , Swine
19.
J Sci Food Agric ; 96(3): 757-63, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25704643

ABSTRACT

BACKGROUND: There is a growing interest in texturally and nutritionally satisfying vegetable alternatives to meat. Wheat gluten proteins have unique functional properties but a poor nutritional value in comparison to animal proteins. This study investigated the potential of egg white and bovine milk casein with well-balanced amino acid composition to increase the quality of wheat gluten-based protein-rich foods. RESULTS: Heating a wheat gluten (51.4 g)-water (100.0 mL) blend for 120 min at 100 °C increased its firmness less than heating a wheat gluten (33.0 g)-freeze-dried egg white (16.8 g)-water (100.0 mL) blend. In contrast, the addition of casein to the gluten-water blend negatively impacted firmness after heating. Firmness was correlated with loss of protein extractability in sodium dodecyl sulfate containing medium during heating, which was higher with egg white than with casein. Even more, heat-induced polymerization of the gluten-water blend with egg white but not with casein was greater than expected from the losses in extractability of gluten and egg white on their own. CONCLUSION: Structure formation was favored by mixing gluten with egg white but not with casein. These observations were linked to the intrinsic polymerization behavior of egg white and casein, but also to their interaction with gluten. Thus not all nutritionally suitable proteins can be used for enrichment of gluten-based protein-rich foods.


Subject(s)
Caseins/chemistry , Dietary Proteins/chemistry , Egg Proteins/chemistry , Glutens/chemistry , Triticum/chemistry , Amino Acids/analysis , Amino Acids/chemistry , Animals , Cattle , Chemical Phenomena , Chickens , Hot Temperature , Meat , Nutritive Value , Polymerization , Sensation
20.
Compr Rev Food Sci Food Saf ; 15(4): 786-800, 2016 Jul.
Article in English | MEDLINE | ID: mdl-33401841

ABSTRACT

Proteins play a crucial role in determining texture and structure of many food products. Although some animal proteins (such as egg white) have excellent functional and organoleptic properties, unfortunately, they entail a higher production cost and environmental impact than plant proteins. It is rather unfortunate that plant protein functionality is often insufficient because of low solubility in aqueous media. Enzymatic hydrolysis strongly increases solubility of proteins and alters their functional properties. The latter is attributed to 3 major structural changes: a decrease in average molecular mass, a higher availability of hydrophobic regions, and the liberation of ionizable groups. We here review current knowledge on solubility, water- and fat-holding capacity, gelation, foaming, and emulsifying properties of plant protein hydrolysates and discuss how these properties are affected by controlled enzymatic hydrolysis. In many cases, research in this field has been limited to fairly simple set-ups where functionality has been assessed in model systems. To evolve toward a more widely applied industrial use of plant protein hydrolysates, a more thorough understanding of functional properties is required. The structure-function relationship of protein hydrolysates needs to be studied in depth. Finally, test model systems closer to real food processing conditions, and thus to real foods, would be helpful to evaluate whether plant protein hydrolysates could be a viable alternative for other functional protein sources.

SELECTION OF CITATIONS
SEARCH DETAIL
...