Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Phys Rev Lett ; 87(19): 195508, 2001 Nov 05.
Article in English | MEDLINE | ID: mdl-11690426

ABSTRACT

A photoexcited state of molecular iodine in solution is observed using diffuse x-ray scattering at a synchrotron source. The measured changes in the diffuse scattering profile were consistent with earlier models of iodine's photodissociation and geminate recombination reaction, for which the recombined A/A(') state has a 0.4 A greater interatomic spacing than the resting state and has a lifetime of 500 ps in CH2Cl2. This technique should find application in the study of increasingly complicated photochemical systems which undergo structural rearrangements following rapid photolysis.

2.
Nature ; 406(6797): 752-7, 2000 Aug 17.
Article in English | MEDLINE | ID: mdl-10963603

ABSTRACT

Sample damage by X-rays and other radiation limits the resolution of structural studies on non-repetitive and non-reproducible structures such as individual biomolecules or cells. Cooling can slow sample deterioration, but cannot eliminate damage-induced sample movement during the time needed for conventional measurements. Analyses of the dynamics of damage formation suggest that the conventional damage barrier (about 200 X-ray photons per A2 with X-rays of 12 keV energy or 1 A wavelength) may be extended at very high dose rates and very short exposure times. Here we have used computer simulations to investigate the structural information that can be recovered from the scattering of intense femtosecond X-ray pulses by single protein molecules and small assemblies. Estimations of radiation damage as a function of photon energy, pulse length, integrated pulse intensity and sample size show that experiments using very high X-ray dose rates and ultrashort exposures may provide useful structural information before radiation damage destroys the sample. We predict that such ultrashort, high-intensity X-ray pulses from free-electron lasers that are currently under development, in combination with container-free sample handling methods based on spraying techniques, will provide a new approach to structural determinations with X-rays.


Subject(s)
Proteins/radiation effects , Bacteriophage T4 , Computer Simulation , Electron Probe Microanalysis , Muramidase/radiation effects , Scattering, Radiation , Software
3.
J Synchrotron Radiat ; 7(Pt 1): 22-6, 2000 Jan 01.
Article in English | MEDLINE | ID: mdl-16609168

ABSTRACT

100 picosecond X-ray snapshots visualizing the structural dynamics of macromolecular systems are now routinely available at synchrotron sources. A wealth of fundamental processes in photochemistry, condensed matter physics and biology, however, occur on considerably faster time scales. Standard experimental protocols at synchrotron sources cannot provide structural information with faster temporal resolution as these are limited by the duration of the electron bunch within the synchrotron ring. By walking the timing of femtosecond laser photolysis through a (much longer) X-ray pulse in steps of a few picoseconds, structural information on ultrafast dynamics may be retrieved from a set of X-ray scattering images, initially through deconvolution and subsequently through refinement. This experimental protocol promises immediate improvements in the temporal resolution available at synchrotron sources, facilitating the study of a number of rapid complex photochemical processes. Combined with techniques which reshape the X-ray probe pulse, the accessible temporal domain could further be extended to near-picosecond resolution.

SELECTION OF CITATIONS
SEARCH DETAIL
...