Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 91(18)2017 09 15.
Article in English | MEDLINE | ID: mdl-28659487

ABSTRACT

The mumps virus (MuV) small hydrophobic protein (SH) is a type I membrane protein expressed in infected cells. SH has been reported to interfere with innate immunity by inhibiting tumor necrosis factor alpha (TNF-α)-mediated apoptosis and NF-κB activation. To elucidate the underlying mechanism, we generated recombinant MuVs (rMuVs) expressing the SH protein with an N-terminal FLAG epitope or lacking SH expression due to the insertion of three stop codons into the SH gene. Using these viruses, we were able to show that SH reduces the phosphorylation of IKKß, IκBα, and p65 as well as the translocation of p65 into the nucleus of infected A549 cells. Reporter gene assays revealed that SH interferes not only with TNF-α-mediated NF-κB activation but also with IL-1ß- and poly(I·C)-mediated NF-κB activation, and that this inhibition occurs upstream of the NF-κB pathway components TRAF2, TRAF6, and TAK1. Since SH coimmunoprecipitated with tumor necrosis factor receptor 1 (TNFR1), RIP1, and IRAK1, we hypothesize that SH exerts its inhibitory function by interacting with TNFR1, interleukin-1 receptor type 1 (IL-1R1), and TLR3 complexes in the plasma membrane of infected cells.IMPORTANCE The MuV SH has been shown to impede TNF-α-mediated NF-κB activation and is therefore thought to contribute to viral immune evasion. However, the mechanisms by which SH mediates NF-κB inhibition remained largely unknown. In this study, we show that SH interacts with TNFR1, IL-1R1, and TLR3 complexes in infected cells. We thereby not only shed light on the mechanisms of SH-mediated NF-κB inhibition but also reveal that SH interferes with NF-κB activation induced by interleukin-1ß (IL-1ß) and double-stranded RNA.


Subject(s)
Host-Pathogen Interactions , Mumps virus/immunology , NF-kappa B/antagonists & inhibitors , Receptors, Tumor Necrosis Factor, Type I/metabolism , Toll-Like Receptor 3/metabolism , Viral Proteins/metabolism , Animals , Cell Line , Humans , Receptors, Interleukin-1 Type I
2.
J Gen Virol ; 91(Pt 11): 2773-81, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20702650

ABSTRACT

The small hydrophobic (SH) protein of mumps virus has been reported to interfere with innate immunity by inhibiting tumour necrosis factor alpha-mediated apoptosis. In a yeast two-hybrid screen we have identified the ataxin-1 ubiquitin-like interacting protein (A1Up) as a cellular target of the SH protein. A1Up contains an amino-terminal ubiquitin-like (UbL) domain, a carboxy-terminal ubiquitin-associated (UbA) domain and two stress-inducible heat shock chaperonin-binding (Sti1) motifs. This places it within the ubiquitin-like protein family that is involved in proteasome-mediated activities. Co-immunoprecipitation confirmed the binding of SH and A1Up and demonstrates that a truncated protein fragment corresponding to aa 136-270 of A1Up, which represents the first Sti1-like repeat and an adjacent hydrophobic region, was sufficient for interaction, whereas neither the UbL nor the UbA domains were required for interaction. The ectopic expression of A1Up leads to a redistribution of SH to punctate structures that co-localize with the 20S proteasome in transfected or infected mammalian cells.


Subject(s)
Carrier Proteins/metabolism , Host-Pathogen Interactions , Mumps virus/pathogenicity , Nuclear Proteins/metabolism , Protein Interaction Mapping , Viral Proteins/metabolism , Amino Acid Motifs , Animals , Carrier Proteins/genetics , Cell Line , Chlorocebus aethiops , Humans , Immunoprecipitation , Microscopy, Confocal , Nuclear Proteins/genetics , Protein Binding , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...