Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38543348

ABSTRACT

The effect of particle size and oxidation degree of new carbon microfillers, based on coal pitch (CP) and petroleum pitch (PET) cokes, on the structure as well as thermal, mechanical, and electrical properties of the composites based on ultrahigh molecular weight polyethylene (UHMWPE) was investigated. The composites studied have a segregated structure of filler particle distribution in the UHMWPE matrix. It was found that composite with smaller CP grain fraction has the highest Young's modulus and electrical conductivity compared to the other composites studied, which can be the result of a large contribution of flake-shaped particles. Additionally, conductivity of this composite turned out to be similar to composites with well-known carbon nanofillers, such as graphene, carbon black, and CNTs. Additionally, the relationship between electrical conductivity and Young's modulus values of composites studied was revealed, which indicates that electrical conductivity is very sensitive to the structure of the filler phase in the polymer matrix. In general, it was established that the properties, especially the electrical conductivity, of the composites studied strongly depends on the size, shape, and oxidative treatment of CP and PET filler particles, and that the CP coke of appropriately small particle sizes and flake shape has significant potential as a conductive filler for polymer composites.

2.
Nanotechnology ; 35(15)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38194713

ABSTRACT

Synthesis of Mo2C bare MXenes, without surface terminations groups, via chemical vapor deposition (CVD) on metal foils is scientifically a very intriguing crystal growth process, and there are still challenges and limited fundamental understanding to overcome to obtain high yield and wide crystal size lateral growth. Achieving large area coverage via direct growth is scientifically vital to utilize the full potential of their unique properties in different applications. In this study, we sought to expand the boundaries of the current CVD growth approach for Mo2C MXenes and gain insights into the possibilities and limitations of large area growth, with a particular focus on controlling Mo concentration. We report a facile modification of their typical CVD growth protocol and show its influence on the Mo2C synthesis, with growth times spanning up to 3 h. Specifically, prior to initiating the CVD growth process, we introduced a holding step in temperature at 1095 °C. This proved to be beneficial in increasing the Mo concentration on the liquid Cu growth surface. We achieved an average Mo2C crystals coverage of approximately 50% of the growth substrate area, increased tendency of coalescence and merging of individual flakes, and lateral flake sizes up to 170µm wide. To gain deeper understanding into their CVD growth behavior, we conducted a systematic investigation of the effect of several factors, including (i) a holding step time on Mo diffusion rate through molten Cu, (ii) the Cu foil thickness over the Mo foil, and (iii) the CVD growth time. Phase, chemical and microstructural characterization by x-ray diffraction, x-ray photon spectroscopy, SEM and scanning/transmission electron microscopy revealed that the grown crystals are single phaseα-Mo2C. Furthermore, insights gained from this study sheds light on crucial factors and inherent limitations that are essential to consider and may help guide future research progress in CVD growth of bare MXenes.

3.
J Biomed Mater Res B Appl Biomater ; 110(12): 2649-2666, 2022 12.
Article in English | MEDLINE | ID: mdl-35816273

ABSTRACT

Hydroxyapatite (HAp) constitutes a significant inorganic compound which due to its osteoinductivity, osteoconductivity as well as the ability to promote bone growth and regeneration is widely applied in development of biomaterials designed for bone tissue engineering. In this work, various synthesis methodologies of HAp based on the wet precipitation technique were applied, and the impact of pH of the reaction mixture, the concentration of individual reagents as well as the type of stirring applied (mechanical/magnetic) on the properties of final powders was discussed. Spectroscopic methods (Fourier transform infrared, Raman) and X-ray diffraction allowed to verify the synthesis parameters leading to obtaining calcium phosphate with 96% HAp in phase which indicated higher homogeneity of obtained powder (93.4%) than commercial HAp. Powders' morphology was evaluated using microscopic techniques while specific surface area was determined via Brunauer-Emmett-Teller analysis. Particle size distribution, porosity of powders, and stability of HAp suspensions were also characterized. It was proved that synthesis at pH = 11.0 using mechanical stirring resulted in calcium phosphate with a high phase homogeneity and homogeneous pore size distribution (6-20 nm). Moreover, obtained HAp powder showed 71.8% more specific surface area than commercial material-that is, 110 m3 /g for synthetic HAp and 64 m3 /g in the case of commercial powder-which, in turn, is significant in terms of its potential application as carrier of active substances. Thus it was demonstrated that by applying appropriate conditions of HAp synthesis it is possible to obtain powder with properties enhancing its application potential for medical purposes.


Subject(s)
Calcium Phosphates , Durapatite , Biocompatible Materials , Durapatite/chemistry , Hydrogen-Ion Concentration , Indicators and Reagents , Powders , Spectroscopy, Fourier Transform Infrared , Suspensions , X-Ray Diffraction
4.
Materials (Basel) ; 14(19)2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34640229

ABSTRACT

In recent years, many investigations on the development of innovative dressing materials with potential applications, e.g., for cytostatics delivery, have been performed. One of the most promising carriers is albumin, which tends to accumulate near cancer cells. Here, chitosan-based hydrogels containing albumin spheres and Aloe vera juice, designed for the treatment of skin cancers or burn wounds resulting from radiotherapy, were developed. The presence of albumin in hydrogel matrices was confirmed via Fourier transform infrared (FT-IR) and Raman spectroscopy. Albumin spheres were clearly visible in microscopic images. It was proved that the introduction of albumin into hydrogels resulted in their increased resistance to the tensile load, i.e., approximately 30% more force was needed to break such materials. Modified hydrogels showed approximately 10% more swelling ability. All hydrogels were characterized by hydrophilicity (contact angles were <90°) which may support the regeneration of epithelial cells and non-cytotoxicity towards murine fibroblasts L929 and released Aloe vera juice more effectively in an acidic environment than in a neutral one wherein spheres introduced into the hydrogel matrix extended the release time. Thus, the developed materials, due to their chemical composition and physicochemical properties, constitute promising materials with great application potential for biomedical purposes.

5.
Materials (Basel) ; 12(21)2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31671679

ABSTRACT

Carbon nanotubes have been intensively researched for many years because of a wide array of promising properties that they have. In this paper, we present the impact of synthesis parameters on thermoelectric properties of nanocarbon material. We conducted a number of syntheses of multi-walled carbon nanotubes (MWCNTs) at different temperatures (800 and 900 °C) using various amounts of catalyst (2%, 5.5%, and 9.6%) to facilitate the process. We also tested the influence of injection rate of precursor and the necessity of material purification on thermoelectric properties of MWCNTs. The electrical conductivity, thermal conductivity, and Seebeck coefficient were measurement for all samples. Based on these parameters, the values of Power Factor and Figure of Merit were calculated. The results show that the most important parameter in the context of thermoelectric properties is purity of employed MWCNTs. To obtain appropriate material for this purpose optimum synthesis temperature and appropriate content of the catalyst must be selected. The study also reveals that post-synthetic purification of nanocarbon is essential to produce an attractive material for thermoelectrics.

6.
ACS Nano ; 11(2): 1946-1956, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28117971

ABSTRACT

To synthesize graphene by chemical vapor deposition (CVD) both in large area and with uniform layer number directly over Si/SiOx has proven challenging. The use of catalytically active metal substrates, in particular Cu, has shown far greater success and therefore is popular. That said, for electronics applications it requires a transfer procedure, which tends to damage and contaminate the graphene. Thus, the direct fabrication of uniform graphene on Si/SiOx remains attractive. Here we show a facile confinement CVD approach in which we simply "sandwich" two Si wafers with their oxide faces in contact to form uniform monolayer graphene. A thorough examination of the material reveals it comprises faceted grains despite initially nucleating as round islands. Upon clustering, they facet to minimize their energy. This behavior leads to faceting in polygons, as the system aims to ideally form hexagons, the lowest energy form, much like the hexagonal cells in a beehive, which requires the minimum wax. This process also leads to a near minimal total grain boundary length per unit area. This fact, along with the high graphene quality, is reflected in its electrical performance, which is highly comparable with graphene formed over other substrates, including Cu. In addition, the graphene growth is self-terminating. Our CVD approach is easily scalable and will make graphene formation directly on Si wafers competitive against that from metal substrates, which suffer from transfer. Moreover, this CVD route should be applicable for the direct synthesis of other 2D materials and their van der Waals heterostructures.

SELECTION OF CITATIONS
SEARCH DETAIL
...