Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1036-1037: 149-156, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27760404

ABSTRACT

Spiralin is the most abundant protein of several species of spiroplasmas, helical, motile bacteria pathogenic for arthropods and plants. This amphiphilic protein is anchored to the outer face of the plasma membrane by a lipoylated N-terminal cysteine. Although spiroplasma pathogenicity in mammals is controversial, it was shown that spiralin is highly immunogenic and endowed with immunomodulatory activity. In this paper, we describe a high performance method for the purification of Spiroplasma melliferum spiralin under non-denaturing conditions. The protein was selectively extracted with 3-[(3-cholamidopropyl) dimethylammonio]-1-propyl sulfonate (CHAPS) from the membrane pre-treated with sodium dodecyl-N-sarcosinate (Sarkosyl), and purified to homogeneity by cation-exchange HPLC with an overall yield of ∼60%. Detergent-depleted, water-soluble micelles of spiralin displaying a mean diameter of 170Å, as evidenced by transmission electron microscopy, were obtained by dialysis detergent removal. Circular dichroism spectroscopy and cross immunoprecipitation assay of the purified spiralin strongly suggested that this purification method could retain the structural characteristics of the native spiralin. The strategy developed to purify spiralin (two successive selective extractions of membrane proteins with mild detergents followed by ion-exchange chromatography) should prove useful for the purification of membrane lipoproteins of other bacteria of the class Mollicutes including different pathogens for humans, animals and plants.


Subject(s)
Bacterial Outer Membrane Proteins/isolation & purification , Chromatography, Ion Exchange/methods , Spiroplasma/chemistry , Bacterial Outer Membrane Proteins/chemistry , Cholic Acids/chemistry , Chromatography, Gel/methods , Chromatography, High Pressure Liquid/methods , Circular Dichroism , Detergents/chemistry , Protein Conformation , Protein Denaturation , Sarcosine/analogs & derivatives , Sarcosine/chemistry
2.
Antimicrob Agents Chemother ; 51(2): 468-74, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17101680

ABSTRACT

We showed in a previous study that associations of antimicrobial peptides (AMPs), which are key components of the innate immune systems of all living species, with the fluoroquinolone enrofloxacin can successfully cure HeLa cell cultures of Mycoplasma fermentans and M. hyorhinis contamination. In the present work, the in vitro susceptibility of M. pulmonis, a murine pathogen, to enrofloxacin and four AMPs (alamethicin, globomycin, gramicidin S, and surfactin) was investigated, with special reference to synergistic associations and the effect of the mycoplasma cell concentration. Enrofloxacin and globomycin displayed the lowest MICs (0.4 microM), followed by gramicidin S (3.12 microM), alamethicin (6.25 microM), and surfactin (25 microM). When the mycoplasma cell concentration was varied from 10(4) to 10(8) CFU/ml, the MICs of enrofloxacin and globomycin increased while those of the three other molecules remained essentially constant. The minimal bactericidal concentration of enrofloxacin (0.8 microM) was also lower than those of the peptides (6.25 to 100 microM), but the latter killed the mycoplasma cells much faster than enrofloxacin (2 h versus 1 day). The use of the AMPs in association with enrofloxacin revealed synergistic effects with alamethicin and surfactin. Interestingly, the mycoplasma-killing activities of the two combinations enrofloxacin (MIC/2) plus alamethicin (MIC/4) and enrofloxacin (MIC/2) plus surfactin (MIC/16) were about 2 orders of magnitude higher than those of the three molecules used separately. These results support the interest devoted to AMPs as a novel class of antimicrobial agents and pinpoint their ability to potentiate the activities of conventional antibiotics, such as fluoroquinolones.


Subject(s)
Anti-Infective Agents/pharmacology , Fluoroquinolones/pharmacology , Mycoplasma pulmonis/drug effects , Alamethicin/pharmacology , Animals , Dose-Response Relationship, Drug , Drug Synergism , Enrofloxacin , HeLa Cells , Humans , Mice , Mycoplasma Infections/drug therapy , Mycoplasma Infections/microbiology , Mycoplasma pulmonis/cytology , Peptides, Cyclic/pharmacology , Time Factors
3.
Antimicrob Agents Chemother ; 49(10): 4154-65, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16189093

ABSTRACT

Antimicrobial peptides are widely distributed in nature, and in vertebrates, they play a key function in the innate immune defense system. It is generally agreed that these molecules may provide new antibiotics with therapeutic value. However, there are still many unsolved questions regarding the mechanisms underlying their antimicrobial activity as well as the mechanisms of resistance evolved by microorganisms against these molecules. The second point was addressed in this study. After determining the activity of 10 antimicrobial peptides against Mycoplasma pulmonis, a murine respiratory pathogen, the development of resistance was investigated. Following in vitro selection using subinhibitory concentrations of peptides, clones of this bacterium showing increased resistance to melittin or gramicidin D were obtained. For some of the clones, a cross-resistance was observed between these two peptides, in spite of their deep structural differences, and also with tetracycline. A proteomic analysis suggested that the stress response in these clones was constitutively activated, and this was confirmed by finding mutations in the hrcA gene; in mycoplasmas, bacteria which lack alternative sigma factors, the HrcA protein is supposed to play a key role as a negative regulator of heat shock proteins. By complementation of the hrcA mutants with the wild-type gene, the initial MICs of melittin and gramicidin D decreased to values close to the initial ones. This indicates that the resistance of M. pulmonis to these two antimicrobial peptides could result from a stress response involving HrcA-regulated genes.


Subject(s)
Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Drug Resistance, Bacterial/genetics , Heat-Shock Proteins/metabolism , Mycoplasma pulmonis/drug effects , Clone Cells , DNA Mutational Analysis , Drug Resistance, Multiple/genetics , Genes, Bacterial , Genetic Complementation Test , Gramicidin/pharmacology , Heat-Shock Proteins/genetics , Melitten/pharmacology , Microbial Sensitivity Tests , Mutation , Mycoplasma pulmonis/genetics , Proteome/analysis , Proteomics , Selection, Genetic
4.
Appl Environ Microbiol ; 71(6): 2888-93, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15932982

ABSTRACT

Replicative oriC plasmids were recently developed for several mollicutes, including three Mycoplasma species belonging to the mycoides cluster that are responsible for bovine and caprine diseases: Mycoplasma mycoides subsp. mycoides small-colony type, Mycoplasma mycoides subsp. mycoides large-colony type, and Mycoplasma capricolum subsp. capricolum. In this study, oriC plasmids were evaluated in M. capricolum subsp. capricolum as genetic tools for (i) expression of heterologous proteins and (ii) gene inactivation by homologous recombination. The reporter gene lacZ, encoding beta-galactosidase, and the gene encoding spiralin, an abundant surface lipoprotein of the related mollicute Spiroplasma citri, were successfully expressed. Functional Escherichia coli beta-galactosidase was detected in transformed Mycoplasma capricolum subsp. capricolum cells despite noticeable codon usage differences. The expression of spiralin in M. capricolum subsp. capricolum was assessed by colony and Western blotting. Accessibility of this protein at the cell surface and its partition into the Triton X-114 detergent phase suggest a correct maturation of the spiralin precursor. The expression of a heterologous lipoprotein in a mycoplasma raises potentially interesting applications, e.g., the use of these bacteria as live vaccines. Targeted inactivation of gene lppA encoding lipoprotein A was achieved in M. capricolum subsp. capricolum with plasmids harboring a replication origin derived from S. citri. Our results suggest that the selection of the infrequent events of homologous recombination could be enhanced by the use of oriC plasmids derived from related mollicute species. Mycoplasma gene inactivation opens the way to functional genomics in a group of bacteria for which a large wealth of genome data are already available and steadily growing.


Subject(s)
Genetic Vectors , Genomics , Mycoplasma capricolum/genetics , Plasmids/genetics , Replication Origin/genetics , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/genetics , Escherichia coli/genetics , Gene Targeting , Genetic Techniques , Lac Operon , Mycoplasma capricolum/metabolism , Promoter Regions, Genetic , Recombination, Genetic
5.
Eur J Biochem ; 270(10): 2207-17, 2003 May.
Article in English | MEDLINE | ID: mdl-12752440

ABSTRACT

Peptides composed of leucyl and lysyl residues ('LK peptides') with different compositions and sequences were compared for their antibacterial activities using cell wall-less bacteria of the class Mollicutes (acholeplasmas, mycoplasmas and spiroplasmas) as targets. The antibacterial activity of the amphipathic alpha-helical peptides varied with their size, 15 residues being the optimal length, independent of the membrane hydrophobic core thickness and the amount of cholesterol. The 15-residue ideally amphipathic alpha helix with a +5 positive net charge (KLLKLLLKLLLKLLK) had the strongest antibacterial activity, similar to that of melittin. In contrast, scrambled peptides devoid of amphipathy and the less hydrophobic beta-sheeted peptides [(LK)nK], even those 15-residue long, were far less potent than the helical ones. Furthermore, the growth inhibitory activity of the peptides was correlated with their ability to abolish membrane potential. These data are fully consistent with a predominantly flat orientation of LK peptides at the lipid/water interface and strongly supports that these peptides and probably the linear polycationic amphipathic defence peptides act on bacterial membranes in four main steps according to the 'carpet' model: (a) interfacial partitioning with accumulation of monomers on the target membrane (limiting step); (b) peptide structural changes (conformation, aggregation, and orientation) induced by interactions with the lipid bilayer (as already shown with liposomes and erythrocytes); (c) plasma membrane permeabilization/depolarization via a detergent-like effect; and (d) rapid bacterial cell death if the extent of depolarization is maintained above a critical threshold.


Subject(s)
Peptides/chemistry , Tenericutes/metabolism , Anti-Bacterial Agents/pharmacology , Cations , Cell Death , Cell Membrane/metabolism , Cholesterol/chemistry , Cholesterol/metabolism , Chromatography, High Pressure Liquid , Hydrogen-Ion Concentration , Lysine/chemistry , Melitten/chemistry , Membrane Potentials , Polymers/chemistry , Protein Structure, Secondary , Spiroplasma/metabolism , Time Factors
6.
Biochim Biophys Acta ; 1562(1-2): 45-56, 2002 May 03.
Article in English | MEDLINE | ID: mdl-11988221

ABSTRACT

The surface of spiroplasmas, helically shaped pathogenic bacteria related to the mycoplasmas, is crowded with the membrane-anchored lipoprotein spiralin whose structure and function are unknown. In this work, the secondary structure of spiralin under the form of detergent-free micelles (average Stokes radius, 87.5 A) in water and at the air/water interface, alone or in interaction with lipid monolayers was analyzed. FT-IR and circular dichroism (CD) spectroscopic data indicate that spiralin in solution contains about 25+/-3% of helices and 38+/-2% of beta sheets. These measurements are consistent with a consensus predictive analysis of the protein sequence suggesting about 28% of helices, 32% of beta sheets and 40% of irregular structure. Brewster angle microscopy (BAM) revealed that, in water, the micelles slowly disaggregate to form a stable and homogeneous layer at the air/water interface, exhibiting a surface pressure up to 10 mN/m. Polarization modulation infrared reflection absorption spectroscopy (PMIRRAS) spectra of interfacial spiralin display a complex amide I band characteristic of a mixture of beta sheets and alpha helices, and an intense amide II band. Spectral simulations indicate a flat orientation for the beta sheets and a vertical orientation for the alpha helices with respect to the interface. The combination of tensiometric and PMIRRAS measurements show that, when spiroplasma lipids are used to form a monolayer at the air/water interface, spiralin is adsorbed under this monolayer and its antiparallel beta sheets are mainly parallel to the polar-head layer of the lipids without deep perturbation of the fatty acid chains organization. Based upon these results, we propose a 'carpet model' for spiralin organization at the spiroplasma cell surface. In this model, spiralin molecules anchored into the outer leaflet of the lipid bilayer by their N-terminal lipid moiety are composed of two colinear domains (instead of a single globular domain) situated at the lipid/water interface. Owing to the very high amount of spiralin in the membrane, such carpets would cover most if not all the lipids present in the outer leaflet of the bilayer.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Lipoproteins/chemistry , Air , Amino Acid Sequence , Circular Dichroism , Micelles , Molecular Sequence Data , Protein Structure, Secondary , Solutions , Spectroscopy, Fourier Transform Infrared , Spiroplasma , Water
7.
Antimicrob Agents Chemother ; 46(5): 1218-25, 2002 May.
Article in English | MEDLINE | ID: mdl-11959548

ABSTRACT

Mycoplasmas, which are bacteria that are devoid of a cell wall and which belong to the class Mollicutes, are pathogenic for humans and animals and are frequent contaminants of tissue cell cultures. Although contamination of cultures with mycoplasma can easily be monitored with fluorescent dyes that stain DNA and/or with molecular probes, protection and decontamination of cultures remain serious challenges. In the present work, we investigated the susceptibilities of Mycoplasma fermentans and Mycoplasma hyorhinis to the membrane-active peptides alamethicin, dermaseptin B2, gramicidin S, and surfactin by growth inhibition and lethality assays. In the absence of serum, the four peptides killed mycoplasmas at minimal bactericidal concentrations that ranged from 12.5 to 100 microM, but in all cases the activities were decreased by the presence of serum. As a result, under standard culture conditions (10% serum) only alamethicin and gramicidin S were able to inhibit mycoplasma growth (MICs, 50 microM), while dermaseptin B2 and surfactin were ineffective. Furthermore, 8 days of treatment of HeLa cell cultures experimentally contaminated with either mycoplasma species with 70 microM enrofloxacin cured the cultures of infection, whereas treatment with alamethicin and gramicidin S alone was not reliable because the concentrations and treatment times required were toxic to the cells. However, combination of alamethicin or gramicidin S with 70 microM enrofloxacin allowed mycoplasma eradication after 30 min or 24 h of treatment, depending on the mycoplasma and peptide considered. HeLa cell cultures experimentally infected with mycoplasmas should prove to be a useful model for study of the antimycoplasma activities of antibiotics and membrane-active peptides under conditions close to those found in vivo.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cell Membrane/metabolism , Fluoroquinolones , Mycoplasma fermentans/drug effects , Mycoplasma/drug effects , Peptides , Anti-Infective Agents/pharmacology , Culture Media , Enrofloxacin , HeLa Cells , Humans , Microbial Sensitivity Tests , Microscopy, Electron , Mycoplasma/growth & development , Mycoplasma fermentans/growth & development , Quinolones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...