Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 4311, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35879300

ABSTRACT

Excess charge on polar surfaces of ionic compounds is commonly described by the two-dimensional electron gas (2DEG) model, a homogeneous distribution of charge, spatially-confined in a few atomic layers. Here, by combining scanning probe microscopy with density functional theory calculations, we show that excess charge on the polar TaO2 termination of KTaO3(001) forms more complex electronic states with different degrees of spatial and electronic localization: charge density waves (CDW) coexist with strongly-localized electron polarons and bipolarons. These surface electronic reconstructions, originating from the combined action of electron-lattice interaction and electronic correlation, are energetically more favorable than the 2DEG solution. They exhibit distinct spectroscopy signals and impact on the surface properties, as manifested by a local suppression of ferroelectric distortions.

2.
Sci Rep ; 10(1): 17763, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33082447

ABSTRACT

Mixed ionic-electronic-conducting perovskites such as SrTiO3 are promising materials to be employed in efficient energy conversion or information processing. These materials exhibit a self-doping effect related to the formation of oxygen vacancies and electronic charge carriers upon reduction. It has been found that dislocations play a prominent role in this self-doping process, serving as easy reduction sites, which result in the formation of conducting filaments along the dislocations. While this effect has been investigated in detail with theoretical calculations and direct observations using local-conductivity atomic force microscopy, the present work highlights the optical properties of dislocations in SrTiO3 single crystals. Using the change in optical absorption upon reduction as an indicator, two well-defined arrangements of dislocations, namely a bicrystal boundary and a slip band induced by mechanical deformation, are investigated by means of scanning near-field optical microscopy. In both cases, the regions with enhanced dislocation density can be clearly identified as regions with higher optical absorption. Assisted by ab initio calculations, confirming that the agglomeration of oxygen vacancies significantly change the local dielectric constants of the material, the results provide direct evidence that reduced dislocations can be classified as alien matter embedded in the SrTiO3 matrix.

3.
Beilstein J Nanotechnol ; 10: 1596-1607, 2019.
Article in English | MEDLINE | ID: mdl-31467822

ABSTRACT

Controlling the work function of transition metal oxides is of key importance with regard to future energy production and storage. As the majority of applications involve the use of heterostructures, the most suitable characterization technique is Kelvin probe force microscopy (KPFM), which provides excellent energetic and lateral resolution. In this paper, we demonstrate precise characterization of the work function using the example of artificially formed crystalline titanium monoxide (TiO) nanowires on strontium titanate (SrTiO3) surfaces, providing a sharp atomic interface. The measured value of 3.31(21) eV is the first experimental work function evidence for a cubic TiO phase, where significant variations among the different crystallographic facets were also observed. Despite the remarkable height of the TiO nanowires, KPFM was implemented to achieve a high lateral resolution of 15 nm, which is close to the topographical limit. In this study, we also show the unique possibility of obtaining work function and conductivity maps on the same area by combining noncontact and contact modes of atomic force microscopy (AFM). As most of the real applications require ambient operating conditions, we have additionally checked the impact of air venting on the work function of the TiO/SrTiO3(100) heterostructure, proving that surface reoxidation occurs and results in a work function increase of 0.9 eV and 0.6 eV for SrTiO3 and TiO, respectively. Additionally, the influence of adsorbed surface species was estimated to contribute 0.4 eV and 0.2 eV to the work function of both structures. The presented method employing KPFM and local conductivity AFM for the characterization of the work function of transition metal oxides may help in understanding the impact of reduction and oxidation on electronic properties, which is of high importance in the development of effective sensing and catalytic devices.

4.
Sci Rep ; 9(1): 2502, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30792458

ABSTRACT

Electroreduction experiments on metal oxides are well established for investigating the nature of the material change in memresistive devices, whose basic working principle is an electrically-induced reduction. While numerous research studies on this topic have been conducted, the influence of extended defects such as dislocations has not been addressed in detail hitherto. Here, we show by employing thermal microscopy to detect local Joule heating effects in the first stage of electroreduction of SrTiO3 that the current is channelled along extended defects such as dislocations which were introduced mechanically by scratching or sawing. After prolonged degradation, the matrix of the crystal is also electroreduced and the influence of the initially present dislocations diminished. At this stage, a hotspot at the anode develops due to stoichiometry polarisation leading not only to the gliding of existing dislocations, but also to the evolution of new dislocations. Such a formation is caused by electrical and thermal stress showing dislocations may play a significant role in resistive switching effects.

6.
Nanoscale ; 11(1): 89-97, 2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30226243

ABSTRACT

Reduced titanium oxide structures are regarded as promising materials for various catalytic and optoelectronic applications. There is thus an urgent need for developing methods of controllable formation of crystalline nanostructures with tunable oxygen nonstoichiometry. We introduce the Extremely Low Oxygen Partial Pressure (ELOP) method, employing an oxygen getter in close vicinity to an oxide during thermal reduction under vacuum, as an effective bottom-up method for the production of nanowires arranged in a nanoscale metallic network on a SrTiO3 perovskite surface. We demonstrate that the TiO nanowires crystallize in a highly ordered cubic phase, where single nanowires are aligned along the main crystallographic directions of the SrTiO3 substrate. The dimensions of the nanostructures are easily tunable from single nanometers up to the mesoscopic range by varying the temperature of reduction. The interface between TiO and SrTiO3 (metal and insulator) was found to be atomically sharp providing the unique possibility of the investigation of electronic states, especially since the high conductivity of the TiO nanostructures is maintained after room temperature oxidation. According to the growth model we propose, TiO nanowire formation is possible due to the incongruent sublimation of strontium and crystallographic shearing, triggered by the extremely low oxygen partial pressure (ELOP). The controlled formation of conductive nanowires on a perovskite surface holds technological potential for implementation in memristive devices, organic electronics, or for catalytic applications, and provides insight into the mechanism of nanoscale phase transformations in metal oxides. We believe that the ELOP mechanism of suboxide formation is suitable for the formation of reduced suboxides on other perovskite oxides and for the broader class of transition metal oxides.

7.
Phys Chem Chem Phys ; 16(47): 26112-8, 2014 Dec 21.
Article in English | MEDLINE | ID: mdl-25361405

ABSTRACT

Controlling thin film growth of conjugated molecules is a key factor in organic electronics. Here, we report on the growth of the organic semiconductor para-hexaphenyl (6P) on ion bombarded, rippled TiO2(110) surfaces. These surfaces represent a one-dimensionally patterned substrate with alternating descending and ascending step trains with typical step distances below 1 nm. A clear island shape anisotropy and a discretization of the island width according to the ripple wavelength have been observed which are addressed to anisotropic detachment of molecules differently bound to the island rim at ascending and descending steps. By changing the average ripple length from ∼11 nm to ∼60 nm, the islands' length-to-width ratio could be tuned between ∼1.5 : 1 and ∼4.5 : 1. Further, strong diffusion anisotropy along and perpendicular to the ripples was found to be responsible for an increasing island density with decreasing ripple length.

SELECTION OF CITATIONS
SEARCH DETAIL
...