Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 20(7): 4975-4984, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32502353

ABSTRACT

Sequence plays an important role in self-assembly of 3D complex structures, particularly for those with overlap, intersection, and asymmetry. However, it remains challenging to program the sequence of self-assembly, resulting in geometric and topological constrains. In this work, a nanoscale, programmable, self-assembly technique is reported, which uses electron irradiation as "hands" to manipulate the motion of nanostructures with the desired order. By assigning each single assembly step in a particular order, localized motion can be selectively triggered with perfect timing, making a component accurately integrate into the complex 3D structure without disturbing other parts of the assembly process. The features of localized motion, real-time monitoring, and surface patterning open the possibility for the further innovation of nanomachines, nanoscale test platforms, and advanced optical devices.

2.
J Vis Exp ; (139)2018 09 23.
Article in English | MEDLINE | ID: mdl-30295662

ABSTRACT

The assembly of two-dimensional (2D) graphene into three-dimensional (3D) polyhedral structures while preserving the graphene's excellent inherent properties has been of great interest for the development of novel device applications. Here, fabrication of 3D, microscale, hollow polyhedrons (cubes) consisting of a few layers of 2D graphene or graphene oxide sheets via an origami-like self-folding process is described. This method involves the use of polymer frames and hinges, and aluminum oxide/chromium protection layers that reduce tensile, spatial, and surface tension stresses on the graphene-based membranes when the 2D nets are transformed into 3D cubes. The process offers control of the size and shape of the structures as well as parallel production. In addition, this approach allows the creation of surface modifications by metal patterning on each face of the 3D cubes. Raman spectroscopy studies show the method allows the preservation of the intrinsic properties of the graphene-based membranes, demonstrating the robustness of our method.


Subject(s)
Graphite , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...