Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Phys Chem Chem Phys ; 19(12): 8423-8427, 2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28286895

ABSTRACT

Magnetic trapping of SH radicals, produced via the photostop technique, has been demonstrated. H2S in a skimmed, supersonic molecular beam was photodissociated at 212.8 nm to produce SH inside a 330 mK deep static magnetic trap. The molecular-beam speed was controlled by the mixing ratio of H2S in Kr to match the recoil velocity of the SH photofragments such that some SH radicals were produced with near-zero laboratory-frame velocity. The density of SH radicals in the 2Π3/2, v = 0, J = 3/2 state was followed by (2 + 1) REMPI over seven orders of magnitude of signal intensity. 5 ms after photodissociation, SH radicals moving faster than the capture velocity of 13 m s-1 had left the trap. The 1/e trap lifetime of the remaining SH radicals was 40 ± 10 ms at an estimated density of 5 × 104 molecules per cm3. Photostop offers a simple and direct way to accumulate absolute ground state molecules in a variety of traps.

2.
Phys Chem Chem Phys ; 13(18): 8441-7, 2011 May 14.
Article in English | MEDLINE | ID: mdl-21359358

ABSTRACT

The production of a translationally cold (T < 1 K) sample of bromine atoms with estimated densities of up to 10(8) cm(-3) using photodissociation is presented. A molecular beam of Br(2) seeded in Kr is photodissociated into Br + Br* fragments, and the velocity distribution of the atomic fragments is determined using (2 + 1) REMPI and velocity map ion imaging. By recording images with varying delay times between the dissociation and probe lasers, we investigate the length of time after dissociation for which atoms remain in the laser focus, and determine the velocity spread of those atoms. By careful selection of the photolysis energy, it is found that a fraction of the atoms can be detected for delay times in excess of 100 µs. These are atoms for which the fragment recoil velocity vector is directly opposed and equal in magnitude to the parent beam velocity leading to a resultant lab frame velocity of approximately zero. The FWHM velocity spreads of detected atoms along the beam axis after 100 µs are less than 5 ms(-1), corresponding to temperatures in the milliKelvin range, opening the possibility that this technique could be utilized as a slow Br atom source.

3.
Rev Sci Instrum ; 80(5): 053104, 2009 May.
Article in English | MEDLINE | ID: mdl-19485489

ABSTRACT

A method to reconstruct full three-dimensional photofragment distributions from their two-dimensional (2D) projection onto a detection plane is presented, for processes in which the expanding Newton sphere has cylindrical symmetry around an axis parallel to the projection plane. The method is based on: (1) onion-peeling in polar coordinates [Zhao et al., Rev. Sci. Instrum. 73, 3044 (2002)] in which the contribution to the 2D projection from events outside the plane bisecting the Newton sphere are subtracted in polar coordinates at incrementally decreasing radii; and (2) ideas borrowed from the basis set expansion (pBASEX) method in polar coordinates [Garcia et al., Rev. Sci. Instrum. 75, 4989 (2004)], which we use to generate 2D projections at each incremental radius for the subtraction. Our method is as good as the pBASEX method in terms of accuracy, is devoid of centerline noise common to reconstruction methods employing Cartesian coordinates; and it is computationally cheap allowing images to be reconstructed as they are being acquired in a typical imaging experiment.

4.
Science ; 269(5221): 207-10, 1995 Jul 14.
Article in English | MEDLINE | ID: mdl-17789848

ABSTRACT

The H + H(2) exchange reaction constitutes an excellent benchmark with which to test dynamical theories against experiments. The H + D(2) (vibrational quantum number v = 0, rotational quantum number j = 0) reaction has been studied in crossed molecular beams at a collision energy of 1.28 electron volts, with the use of the technique of Rydberg atom time-of-flight spectroscopy. The experimental resolution achieved permits the determination of fully rovibrational state-resolved differential cross sections. The high-resolution data allow a detailed assessment of the applicability and quality of quasi-classical trajectory (QCT) and quantum mechanical (QM) calculations. The experimental results are in excellent agreement with the QM results and in slightly worse agreement with the QCT results. This theoretical reproduction of the experimental data was achieved without explicit consideration of geometric phase effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...