Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 136(29): 10361-72, 2014 Jul 23.
Article in English | MEDLINE | ID: mdl-25009990

ABSTRACT

We use gas-phase negative ion photoelectron spectroscopy to study the quasilinear carbene propargylene, HCCCH, and its isotopologue DCCCD. Photodetachment from HCCCH­ affords the X̃(3B) ground state of HCCCH and its ã(1A), b̃ (1B), d̃(1A2), and B̃(3A2) excited states. Extended, negatively anharmonic vibrational progressions in the X̃(3B) ground state and the open-shell singlet b̃ (1B) state arise from the change in geometry between the anion and the neutral states and complicate the assignment of the origin peak. The geometry change arising from electron photodetachment results in excitation of the ν4 symmetric CCH bending mode, with a measured fundamental frequency of 363 ± 57 cm(­1) in the X̃(3B) state. Our calculated harmonic frequency for this mode is 359 cm(­1). The Franck­Condon envelope of this progression cannot be reproduced within the harmonic approximation. The spectra of the ã(1A), d̃(1A2), and B̃(3A2) states are each characterized by a short vibrational progression and a prominent origin peak, establishing that the geometries of the anion and these neutral states are similar. Through comparison of the HCCCH­ and DCCCD­ photoelectron spectra, we measure the electron affinity of HCCCH to be 1.156 ± (0.095)(0.010) eV, with a singlet­triplet splitting between the X̃(3B) and the ã(1A) states of ΔEST = 0.500 ± (0.01)(0.10) eV (11.5 ± (0.2)(2.3) kcal/mol). Experimental term energies of the higher excited states are T0 [b̃(1B)] = 0.94 ± (0.20)(0.22) eV, T0 [d̃(1A2)] = 3.30 ± (0.02)(0.10) eV, T0 [B̃(3A2)] = 3.58 ± (0.02)(0.10) eV. The photoelectron angular distributions show significant π character in all the frontier molecular orbitals, with additional σ character in orbitals that create the X̃(3B) and b̃(1B) states upon electron detachment. These results are consistent with a quasilinear, nonplanar, doubly allylic structure of X̃(3B) HCCCH with both diradical and carbene character.

2.
J Am Chem Soc ; 134(15): 6584-95, 2012 Apr 18.
Article in English | MEDLINE | ID: mdl-22468558

ABSTRACT

The negative ion chemistry of five azine molecules has been investigated using the combined experimental techniques of negative ion photoelectron spectroscopy to obtain electron affinities (EA) and tandem flowing afterglow-selected ion tube (FA-SIFT) mass spectrometry to obtain deprotonation enthalpies (Δ(acid)H(298)). The measured Δ(acid)H(298) for the most acidic site of each azine species is combined with the EA of the corresponding radical in a thermochemical cycle to determine the corresponding C-H bond dissociation energy (BDE). The site-specific C-H BDE values of pyridine, 1,2-diazine, 1,3-diazine, 1,4-diazine, and 1,3,5-triazine are 110.4 ± 2.0, 111.3 ± 0.7, 113.4 ± 0.7, 107.5 ± 0.4, and 107.8 ± 0.7 kcal mol(-1), respectively. The application of complementary experimental methods, along with quantum chemical calculations, to a series of nitrogen-substituted azines sheds light on the influence of nitrogen atom substitution on the strength of C-H bonds in six-membered rings.

3.
J Chem Phys ; 136(13): 134312, 2012 Apr 07.
Article in English | MEDLINE | ID: mdl-22482557

ABSTRACT

A joint experimental-theoretical study has been carried out on electronic states of propadienylidene (H(2)CCC), using results from negative-ion photoelectron spectroscopy. In addition to the previously characterized X(1)A(1) electronic state, spectroscopic features are observed that belong to five additional states: the low-lying ã(3)B(1) and b(3)A(2) states, as well as two excited singlets, Ã(1)A(2) and B(1)B(1), and a higher-lying triplet, c(3)A(1). Term energies (T(0), in cm(-1)) for the excited states obtained from the data are: 10,354±11 (ã(3)B(1)); 11,950±30 (b(3)A(2)); 20,943±11 (c(3)A(1)); and 13,677±11 (Ã(1)A(2)). Strong vibronic coupling affects the Ã(1)A(2) and B(1)B(1) states as well as ã(3)B(1) and b(3)A(2) and has profound effects on the spectrum. As a result, only a weak, broadened band is observed in the energy region where the origin of the B(1)B(1) state is expected. The assignments here are supported by high-level coupled-cluster calculations and spectral simulations based on a vibronic coupling Hamiltonian. A result of astrophysical interest is that the present study supports the idea that a broad absorption band found at 5450 Å by cavity ringdown spectroscopy (and coincident with a diffuse interstellar band) is carried by the B(1)B(1) state of H(2)CCC.

4.
J Phys Chem A ; 116(12): 3118-23, 2012 Mar 29.
Article in English | MEDLINE | ID: mdl-22420311

ABSTRACT

The photoelectron spectrum of the anilinide ion has been measured. The spectrum exhibits a vibrational progression of the CCC in-plane bending mode of the anilino radical in its electronic ground state. The observed fundamental frequency is 524 ± 10 cm(-1). The electron affinity (EA) of the radical is determined to be 1.607 ± 0.004 eV. The EA value is combined with the N-H bond dissociation energy of aniline in a negative ion thermochemical cycle to derive the deprotonation enthalpy of aniline at 0 K; Δ(acid)H(0)(PhHN-H) = 1535.4 ± 0.7 kJ mol(-1). Temperature corrections are made to obtain the corresponding value at 298 K and the gas-phase acidity; Δ(acid)H(298)(PhHN-H) = 1540.8 ± 1.0 kJ mol(-1) and Δ(acid)G(298)(PhHN-H) = 1509.2 ± 1.5 kJ mol(-1), respectively. The compatibility of this value in the acidity scale that is currently available is examined by utilizing the acidity of acetaldehyde as a reference.

5.
J Chem Phys ; 135(20): 204307, 2011 Nov 28.
Article in English | MEDLINE | ID: mdl-22128935

ABSTRACT

We report the 364-nm photoelectron spectrum of HC(4)N(-). We observe electron photodetachment from the bent X(2)A" state of HC(4)N(-) to both the near-linear X(3)A" and the bent ã (1)A' states of neutral HC(4)N. We observe an extended, unresolved vibrational progression corresponding to X(3)A" ← X(2)A" photodetachment, and we measure the electron affinity (EA) of the X(3)A" state of HC(4)N to be 2.05(8) eV. Photodetachment to the bent ã (1)A' state results in a single intense origin peak at a binding energy of 2.809(4) eV, from which we determine the singlet-triplet splitting (ΔE(ST)) of HC(4)N: 0.76(8) eV. For comparison and to aid in the interpretation of the HC(4)N(-) spectrum, we also report the 364-nm photoelectron spectra of HCCN(-) and DCCN(-). Improved signal-to-noise over the previous HCCN(-) and DCCN(-) photoelectron spectra allows for a more precise determination of the EAs and ΔE(ST)s of HCCN and DCCN. The EAs of HCCN and DCCN are measured to be 2.001(15) eV and 1.998(15) eV, respectively; ΔE(ST)(HCCN) is 0.510(15) eV and ΔE(ST)(DCCN) is 0.508(15) eV. These results are discussed in the context of other organic carbene chains.

6.
J Am Soc Mass Spectrom ; 22(7): 1260-72, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21953109

ABSTRACT

The gas phase reactivity of 1,3,5-triazine with several oxyanions and carbanions, as well as amide, was evaluated using a flowing afterglow-selected ion flow tube mass spectrometer. Isotopic labeling, H/D exchange, and collision induced dissociation experiments were conducted to facilitate the interpretation of structures and fragmentation processes. A multi-step (→ HCN + HC(2)N (2) (-) → CN(-) + 2 HCN) and/or single-step (→ CN(-) + 2 HCN) ring-opening collision-induced fragmentation process appears to exist for 1,3,5-triazinide. In addition to proton and hydride transfer reactions, the data indicate a competitive nucleophilic aromatic addition pathway (S(N)Ar) over a wide range of relative gas phase acidities to form strong anionic σ-adducts (Meisenheimer complexes). The significant hydride acceptor properties and stability of the anionic σ-adducts are rationalized by extremely electrophilic carbon centers and symmetric charge delocalization at the electron-withdrawing nitrogen positions. The types of anion-arene binding motifs and their influence on reaction pathways are discussed.


Subject(s)
Anions/chemistry , Gases/chemistry , Hydrogen/chemistry , Mass Spectrometry/methods , Triazines/chemistry , Deuterium Exchange Measurement , Protons
7.
J Chem Phys ; 134(18): 184306, 2011 May 14.
Article in English | MEDLINE | ID: mdl-21568505

ABSTRACT

We report the 364-nm negative ion photoelectron spectra of CHX(2)(-) and CDX(2)(-), where X = Cl, Br, and I. The pyramidal dihalomethyl anions undergo a large geometry change upon electron photodetachment to become nearly planar, resulting in multiple extended vibrational progressions in the photoelectron spectra. The normal mode analysis that successfully models photoelectron spectra when geometry changes are modest is unable to reproduce qualitatively the experimental data using physically reasonable parameters. Specifically, the harmonic normal mode analysis using Cartesian displacement coordinates results in much more C-H stretch excitation than is observed, leading to a simulated photoelectron spectrum that is much broader than that which is seen experimentally. A (2 + 1)-dimensional anharmonic coupled-mode analysis much better reproduces the observed vibrational structure. We obtain an estimate of the adiabatic electron affinity of each dihalomethyl radical studied. The electron affinity of CHCl(2) and CDCl(2) is 1.3(2) eV, of CHBr(2) and CDBr(2) is 1.9(2) eV, and of CHI(2) and CDI(2) is 1.9(2) eV. Analysis of the experimental spectra illustrates the limits of the conventional normal mode approach and shows the type of analysis required for substantial geometry changes when multiple modes are active upon photodetachment.

8.
J Chem Phys ; 134(6): 064302, 2011 Feb 14.
Article in English | MEDLINE | ID: mdl-21322675

ABSTRACT

Using photoelectron spectroscopy, we interrogate the cyclic furanide anion (C(4)H(3)O(-)) to determine the electron affinity and vibrational structure of the neutral furanyl radical and the term energy of its first excited electronic state. We present the 364-nm photoelectron spectrum of the furanide anion and measure the electron affinity of the X̃(2)A(') ground state of the α-furanyl radical to be 1.853(4) eV. A Franck-Condon analysis of the well-resolved spectrum allows determination of the harmonic frequencies of three of the most active vibrational modes upon X̃(2)A(') ← X̃(1)A(') photodetachment: 855(25), 1064(25), and 1307(40) cm(-1). These modes are ring deformation vibrations, consistent with the intuitive picture of furanide anion photodetachment, where the excess electron is strongly localized on the α-carbon atom. In addition, the Ã(2)A('') excited state of the α-furanyl radical is observed 0.68(7) eV higher in energy than the X̃(2)A(') ground state. Through a thermochemical cycle involving the known gas-phase acidity of furan, the electron affinity of the furanyl radical yields the first experimental determination of the C-H(α) bond dissociation energy of furan (DH(298)(C(4)H(3)O-H(α))): 119.8(2) kcal mol(-1).


Subject(s)
Furans/chemistry , Quantum Theory , Anions/chemistry , Photoelectron Spectroscopy
9.
Eur J Mass Spectrom (Chichester) ; 16(3): 255-68, 2010.
Article in English | MEDLINE | ID: mdl-20530835

ABSTRACT

The 351.1 nm photoelectron spectrum of the peroxyacetate anion, (CH(3)C(O)OO(-)) was measured. Analysis of the spectrum shows that the observed spectral features arise almost exclusively from transitions between the trans-conformer of the anion and the X(2)A'' and A (2)A' states of the corresponding radical. The electron affinity of trans-CH(3)C(O)OO is 2.381+/- 0.007 eV and the term energy splitting of the A (2)A' state is 0.691 +/- 0.009 eV, in excellent agreement with two prior values [Zalyubovsky et al. J. Phys. Chem. A 107, 7704 (2003); Hu et al. J. Phys. Chem. 124, 114305/1 (2006); Hu et al. J. Phys. Chem. 110, 2629 (2006)]. The gas-phase acidity of trans-peroxyacetic acid was bracketed between the acidity of acetic acid and tert-butylthiol at Delta(a)G(298)(trans-CH(3)C(O)OOH)=1439 +/- 14 kJ mol(-1) and Delta(a)H(298)(trans-CH(3)C(O)OOH)=1467+/-14 kJ mol(-1). The acidity of cis-CH(3)C(O)OOH was found by adding a calculated energy correction to the acidity of the trans-conformer; Delta(a)G(298)[cis-CH(3)C(O)OOH] = 1461 +/- 14 kJ mol(-1) and Delta(a)H(298)[cis- CH(3)C(O)OOH]=1490+/-14 kJ mol(-1). The O-H bond dissociation energies for both conformers were determined using a negative ion thermodynamic cycle to be D(0)[trans- CH(3)C(O)OOH]=381+/-14 kJ mol(-1) and D(0)[cis- CH(3)C(O)OOH]=403+/-14 kJ mol(-1). The atmospheric implications of these results and relations to the thermochemistry of peroxyacetyl nitrate are discussed briefly.

10.
J Phys Chem A ; 114(1): 191-200, 2010 Jan 14.
Article in English | MEDLINE | ID: mdl-19827803

ABSTRACT

The 351.1 nm photoelectron spectrum of the peroxyformate anion has been measured. The photoelectron spectrum displays vibronic features in both the 2A'' ground and 2A' first excited states of the corresponding radical. Franck-Condon simulations of the spectrum show that the ion is formed exclusively in the trans-conformation. The electron affinity (EA) of the peroxyformyl radical was determined to be 2.493 +/- 0.006 eV, while the term energy splitting was found to be 0.783-0.020+0.060 eV. Extended progressions in the C-OO (973 +/- 20 cm-1) and O-O (1098 +/- 20 cm-1) stretching modes are observed in the ground state of the radical. The fundamental frequency of the in-plane OCO bend was found to be 574 +/- 35 cm-1. The gas-phase acidity of peroxyformic acid has been determined using an ion-molecule bracketing technique. On the basis of the size of the trans- to cis- isomerization barrier, the measured acidity was assigned to the higher energy trans-conformer of the acid. The gas-phase acidity of the lower energy cis-conformer of peroxyformic acid was found from the measured acidity for the trans-form and a calculated energy correction: DeltaaG298(cis-peroxyformic acid) = 346.8 +/- 3.3 kcal mol-1 and DeltaaH298(cis-peroxyformic acid) = 354.4 +/- 3.3 kcal mol-1. Using a negative ion EA/acidity thermochemical cycle, the O-H bond dissociation energy (D0) values of the trans- and cis-conformers of peroxyformic acid to form the trans-radical were determined to be 94.0 +/- 3.3 and 97.1 +/- 3.3 kcal mol-1, respectively. The heat of formation (DeltafH298) of the trans-peroxyformyl radical was found to be -22.8 +/- 3.5 kcal mol-1.


Subject(s)
Formates/chemistry , Thermodynamics , Anions/chemistry , Photoelectron Spectroscopy
11.
Phys Chem Chem Phys ; 11(23): 4745-53, 2009 Jun 21.
Article in English | MEDLINE | ID: mdl-19492128

ABSTRACT

We report new 351 nm negative ion photoelectron spectra of CCl(2)(-), CBr(2)(-), and CI(2)(-). This study was undertaken in an attempt to understand the major discrepancy between dihalocarbene (CX(2), X = Cl, Br, I) singlet-triplet splittings reported by our laboratory (R. L. Schwartz, G. E. Davico, T. M. Ramond, W. C. Lineberger, J. Phys. Chem. A., 1999, 103, 8213) and new theoretical values. Our recent experiments show that a dihalomethyl anion (CHX(2)(-)) contaminant in the dihalocarbene anion beam, previously considered insignificant, made a major contribution to the reported CX(2)(-) photoelectron spectra. Thus, the interpretations of the earlier CX(2)(-) spectra and the reported singlet-triplet splittings were incorrect. Replacing O(-) with OH(-) in the anion formation process yields a pure dihalomethyl anion, whose highly structured photoelectron spectrum can be subtracted from the contaminated spectrum, yielding a clean CX(2)(-) photoelectron spectrum. The new CCl(2)(-) photoelectron spectrum displays resolved vibronic transitions to the two lowest electronic states of CCl(2): X(1)A(1) and a(3)B(1). The electron affinity of X(1)A(1) CCl(2) is 1.593(6) eV. A large change in geometry between the anion and the neutral triplet state precludes the direct observation of the triplet origin. The energy difference between the X(1)A(1) and a(3)B(1) states of CCl(2) is estimated to be approximately 0.9(2) eV, consistent with high-level theoretical studies. While we confirm similar dihalomethyl anion contaminants in the earlier photoelectron spectra of CBr(2)(-) and CI(2)(-) and report new photoelectron spectra for these ions, the paucity of resolved features in the spectra provides limited additional thermochemical information.

12.
J Chem Phys ; 129(8): 084310, 2008 Aug 28.
Article in English | MEDLINE | ID: mdl-19044826

ABSTRACT

The 351.1 nm photoelectron spectrum of the cyclopentadienide ion has been measured, which reveals the vibronic structure of the X (2)E(1) (") state of the cyclopentadienyl radical. Equation-of-motion ionization potential coupled-cluster (EOMIP-CCSD) calculations have been performed to construct a diabatic model potential of the X (2)E(1) (") state, which takes into account linear Jahn-Teller effects along the e(2) (') normal coordinates as well as bilinear Jahn-Teller effects along the e(2) (') and ring-breathing a(1) (') coordinates. A simulation based on this ab initio model potential reproduces the spectrum very well, identifying the vibronic levels with linear Jahn-Teller angular momentum quantum numbers of +/-1/2. The angular distributions of the photoelectrons for these vibronic levels are highly anisotropic with the photon energies used in the measurements. A few additional weak photoelectron peaks are observed when photoelectrons ejected parallel to the laser polarization are examined. These peaks correspond to the vibronic levels for out-of-plane modes in the ground X (2)E(1) (") state, which arise due to several pseudo-Jahn-Teller interactions with excited states of the radical and quadratic Jahn-Teller interaction in the X (2)E(1) (") state. A variant of the first derivative of the energy for the EOMIP-CCSD method has been utilized to evaluate the strength of these nonadiabatic couplings, which have subsequently been employed to construct the model potential of the X (2)E(1) (") state with respect to the out-of-plane normal coordinates. Simulations based on the model potential successfully reproduce the weak features that become conspicuous in the 0 degrees spectrum. The present study of the photoelectron spectrum complements a previous dispersed fluorescence spectroscopic study by Miller and co-workers [J. Chem. Phys. 114, 4855 (2001); 114, 4869 (2001)] to provide a detailed account of the vibronic structure of X (2)E(1) (") cyclopentadienyl. The electron affinity of the cyclopentadienyl radical is determined to be 1.808+/-0.006 eV. This electron affinity and the gas-phase acidity of cyclopentadiene have been combined in a negative ion thermochemical cycle to determine the C-H bond dissociation energy of cyclopentadiene; D(0)(C(5)H(6),C-H)=81.5+/-1.3 kcal mol(-1). The standard enthalpy of formation of the cyclopentadienyl radical has been determined to be Delta(f)H(298)(C(5)H(5))=63.2+/-1.4 kcal mol(-1).

13.
J Phys Chem A ; 112(40): 9723-30, 2008 Oct 09.
Article in English | MEDLINE | ID: mdl-18774783

ABSTRACT

The 363.8 nm photoelectron spectrum of the iminodiazomethyl anion has been measured. The anion is synthesized through the reaction of the hydroxide ion (HO-) with 1 H-1,2,3-triazole in helium buffer gas in a flowing afterglow ion source. The observed spectrum exhibits well-resolved vibronic structure of the iminodiazomethyl radical. Electronic structure calculations have been performed at the B3LYP/6-311++G(d,p) level of theory to study the molecular structure of the ion. Equilibrium geometries of four possible conformers of the iminodiazomethyl anion have been obtained from the calculations. Spectral simulations have been performed on the basis of the calculated geometries and normal modes of these conformationally isomeric ions and the corresponding radicals. The spectral analysis suggests that the ions of two conformations are primarily formed in the aforementioned reaction. The relative abundance of the two conformers substantially deviates from the thermal equilibrium populations, and it reflects the potential energy surfaces relevant to conformational isomerization processes. The electron affinities of the ( ZE)- and ( EE)-iminodiazomethyl radicals have been determined to be 2.484 +/- 0.007 and 2.460 +/- 0.007 eV, respectively. The energetics of the iminodiazomethyl anion is compared with that of the most stable structural isomer, the 1,2,3-triazolide ion. Collision-induced dissociation of the 1,2,3-triazolide ion has also been studied in flowing afterglow-selected ion flow tube experiments. Facile fragmentation generating a product ion of m/ z 40 has been observed. DFT calculations suggest that fragmentation of the 1,2,3-triazolide ion to the cyanomethyl anion and N2 is exothermic. The stability of the ion is discussed in comparison with other azolide ions with different numbers of N atoms in the five-membered ring.

14.
J Phys Chem B ; 112(2): 545-57, 2008 Jan 17.
Article in English | MEDLINE | ID: mdl-17960930

ABSTRACT

A combination of experimental methods, photoelectron-imaging spectroscopy, flowing afterglow-photoelectron spectroscopy and the flowing afterglow-selected ion flow tube technique, and electronic structure calculations at the B3LYP/6-311++G(d,p) level of density functional theory (DFT) have been employed to study the mechanism of the reaction of the hydroxide ion (HO-) with 1H-1,2,3-triazole. Four different product ion species have been identified experimentally, and the DFT calculations suggest that deprotonation by HO- at all sites of the triazole takes place to yield these products. Deprotonation of 1H-1,2,3-triazole at the N1-H site gives the major product ion, the 1,2,3-triazolide ion. The 335 nm photoelectron-imaging spectrum of the ion has been measured. The electron affinity (EA) of the 1,2,3-triazolyl radical has been determined to be 3.447 +/- 0.004 eV. This EA and the gas-phase acidity of 2H-1,2,3-triazole are combined in a negative ion thermochemical cycle to determine the N-H bond dissociation energy of 2H-1,2,3-triazole to be 112.2 +/- 0.6 kcal mol-1. The 363.8 nm photoelectron spectroscopic measurements have identified the other three product ions. Deprotonation of 1H-1,2,3-triazole at the C5 position initiates fragmentation of the ring structure to yield a minor product, the ketenimine anion. Another minor product, the iminodiazomethyl anion, is generated by deprotonation of 1H-1,2,3-triazole at the C4 position, followed by N1-N2 bond fission. Formation of the other minor product, the 2H-1,2,3-triazol-4-ide ion, can be rationalized by initial deprotonation of 1H-1,2,3-triazole at the N1-H site and subsequent proton exchanges within the ion-molecule complex. The EA of the 2H-1,2,3-triazol-4-yl radical is 1.865 +/- 0.004 eV.

15.
J Phys Chem A ; 111(7): 1214-21, 2007 Feb 22.
Article in English | MEDLINE | ID: mdl-17266290

ABSTRACT

Spectroscopic studies of the SF6- and c-C4F8- anions are reported to provide experimental benchmarks for theoretical predictions of their structures and electron binding energies. The photoelectron spectrum of SF6- is dominated by a long progression in the S-F stretching mode, with an envelope consistent with theoretical predictions that the anion preserves the Oh symmetry of the neutral, but has a longer S-F bond length. This main progression occurs with an unexpectedly strong contribution from a second mode, however, whose characteristic energy does not correspond to any of the neutral SF6 fundamental vibrations in its ground electronic state. The resulting doublet pattern is evident when the bare ion is prepared with low internal energy content (i.e., using N2 carrier gas in a free jet or liquid nitrogen-cooling in a flowing afterglow) but is much better resolved in the spectrum of the SF6-.Ar complex. The infrared predissociation spectrum of SF6-.Ar consists of a strong band at 683(5) cm(-1), which we assign to the nu3 (t1u) fundamental, the same mode that yields the strong 948 cm(-1) infrared transition in neutral SF6. One qualitatively interesting aspect of the SF6- behavior is the simple structure of its photoelectron spectrum, which displays uncluttered, harmonic bands in an energy region where the neutral molecule contains about 2 eV of vibrational excitation. We explore this effect further in the c-C4F8- anion, which also presents a system that is calculated to undergo large, symmetrical distortion upon electron attachment to the neutral. The photoelectron spectrum of this species is dominated by a long, single vibrational progression, this time involving the symmetric ring-breathing mode. Like the SF6- case, the c-C4F8- spectrum is remarkably isolated and harmonic in spite of the significant internal excitation of a relatively complex molecular framework. Both these perfluorinated anions thus share the property that the symmetrical deformation of the structural backbone upon photodetachment launches very harmonic motion in photoelectron bands that occur far above their respective adiabatic electron affinities.

SELECTION OF CITATIONS
SEARCH DETAIL
...