Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Hortic Res ; 11(2): uhad286, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38487294

ABSTRACT

Accurate and real-time monitoring of grapevine freezing tolerance is crucial for the sustainability of the grape industry in cool climate viticultural regions. However, on-site data are limited due to the complexity of measurement. Current prediction models underperform under diverse climate conditions, which limits the large-scale deployment of these methods. We combined grapevine freezing tolerance data from multiple regions in North America and generated a predictive model based on hourly temperature-derived features and cultivar features using AutoGluon, an automated machine learning engine. Feature importance was quantified by AutoGluon and SHAP (SHapley Additive exPlanations) value. The final model was evaluated and compared with previous models for its performance under different climate conditions. The final model achieved an overall 1.36°C root-mean-square error during model testing and outperformed two previous models using three test cultivars at all testing regions. Two feature importance quantification methods identified five shared essential features. Detailed analysis of the features indicates that the model has adequately extracted some biological mechanisms during training. The final model, named NYUS.2, was deployed along with two previous models as an R shiny-based application in the 2022-23 dormancy season, enabling large-scale and real-time simulation of grapevine freezing tolerance in North America for the first time.

2.
J Fungi (Basel) ; 10(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38392777

ABSTRACT

Plant diseases and pests reduce crop yields, accounting for global crop losses of 30% to 50%. In conventional agricultural production systems, these losses are typically controlled by applying chemical pesticides. However, public pressure is mounting to curtail agrochemical use. In this context, employing beneficial endophytic microorganisms is an increasingly attractive alternative to the use of conventional chemical pesticides in agriculture. A multitude of fungal endophytes are naturally present in plants, producing enzymes, small peptides, and secondary metabolites due to their bioactivity, which can protect hosts from pathogens, pests, and abiotic stresses. The use of beneficial endophytic microorganisms in agriculture is an increasingly attractive alternative to conventional pesticides. The aim of this study was to characterize fungal endophytes isolated from apparently healthy, feral wine grapes in eastern Canada that have grown without agrochemical inputs for decades. Host plants ranged from unknown seedlings to long-lost cultivars not widely propagated since the 1800s. HPLC-MS was used to identify unique endophyte-derived chemical compounds in the host plants, while dual-culture competition assays showed a range in endophytes' ability to suppress the mycelial growth of Botrytis, which is typically controlled in viticulture with pesticides. Twelve of the most promising fungal endophytes isolated were identified using multilocus sequencing and morphology, while DNA barcoding was employed to identify some of their host vines. These fungal endophyte isolates, which consisted of both known and putative novel strains, belonged to seven genera in six families and five orders of Ascomycota. Exploring the fungal endophytes in these specimens may yield clues to the vines' survival and lead to the discovery of novel biocontrol agents.

3.
Foods ; 12(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36765995

ABSTRACT

An exploration of the range of expert opinions on the optimum storage temperature for apples and pears in RA (refrigerated air), CA (controlled atmosphere), and DCA (dynamic controlled atmosphere) is provided, based on the accumulated postharvest data from the last 20 years. Apple cultivars have been divided into two storage temperature groups (0 to 1 °C and >1 °C), based on chilling sensitivity. Increasingly, gradual cooling, rather than rapid cooling, is recommended for apple cultivars, especially for chilling-sensitive cultivars. European pear cultivars are held at storage temperatures close to or just below 0 °C since they are not chilling-sensitive, and most cultivars require a cold temperature to induce ethylene production and ripening, especially if picked early for long-term storage. Asian pears apparently have higher temperature requirements in CA, compared with European pears. The temperature recommendations for RA and CA storage differ in some apple and European pear cultivars. In such cases, the CA recommendation is, on average, approximately 0.9 °C higher for apple cultivars and approximately 0.5 °C higher for pear cultivars, compared with RA. Research evidence suggests that some apple and pear cultivars can be stored at higher temperatures in DCA than in CA, and if the ethylene inhibitor, 1-methylcyclopropene (1-MCP), is applied in CA and/or DCA, leading to possible energy savings and quality benefits. A cool growing season may increase postharvest disorders, depending on cultivar and region. The store or packinghouse manager may choose to mitigate potential postharvest problems by maintaining the storage temperature at or above the temperature listed here and/or using stepwise (gradual) cooling. The storage temperature can affect the humidity and vapour pressure deficit (driving force) in the storage room. Altering the vapour pressure deficit controls the water loss in stored fruit, which can affect various quality parameters and the occurrence of several storage disorders.

4.
Photosynth Res ; 107(3): 223-35, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21290261

ABSTRACT

The lower oxygen limit (LOL) in plants may be identified through the measure of respiratory gases [i.e. the anaerobic compensation point (ACP) or the respiratory quotient breakpoint (RQB)], but recent work shows it may also be identified by a sudden rise in dark minimum fluorescence (F(o)). The interrelationship between aerobic respiration and fermentative metabolism, which occur in the mitochondria and cytosol, respectively, and fluorescence, which emanates from the chloroplasts, is not well documented in the literature. Using spinach (Spinacia oleracea), this study showed that F(o) and photochemical quenching (q(P)) remained relatively unchanged until O(2) levels dropped below the LOL. An over-reduction of the plastoquinone (PQ) pool is believed to increase F(o) under dark + anoxic conditions. It is proposed that excess cytosolic reductant due to inhibition of the mitochondria's cytochrome oxidase under low-O(2), may be the primary reductant source. The maximum fluorescence (F(m)) is largely unaffected by low-O(2) in the dark, but was severely quenched, mirroring changes to the xanthophyll de-epoxidation state (DEPS), under even low-intensity light (≈4 µmol m(-2) s(-1)). In low light, the low-O(2)-induced increase in F(o) was also quenched, likely by non-photochemical and photochemical means. The degree of quenching in the light was negatively correlated with the level of ethanol fermentation in the dark. A discussion detailing the possible roles of cyclic electron flow, the xanthophyll cycle, chlororespiration and a pathway we termed 'chlorofermentation' were used to interpret fluorescence phenomena of both spinach and apple (Malus domestica) over a range of atmospheric conditions under both dark and low-light.


Subject(s)
Chlorophyll/metabolism , Fermentation , Oxygen/metabolism , Spinacia oleracea/metabolism , Xanthophylls/metabolism , Acetaldehyde/metabolism , Acetates/metabolism , Dithiothreitol , Electron Transport , Ethanol/metabolism , Fluorescence , Light , Malus/metabolism , Mitochondria/metabolism , Oxidoreductases/metabolism , Photosynthesis
5.
Photosynth Res ; 97(3): 205-14, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18668341

ABSTRACT

The minimum fluorescence parameter (Falpha), generated using the new pulse frequency modulation (PFM) technology, was compared with the minimum fluorescence parameter (Fo), generated by pulse amplitude modulation (PAM), in response to a reversible low-oxygen stress in 'Honeycrisp'trade mark (HC) apples (Malus domestica) and an irreversible osmotic stress induced by water loss in two grape (Vitis spp.) cultivars ('L'Acadie' (LAc) and 'Thompson Seedless' (TS)). The minimum fluorescence values produced by both fluorometer types in response to a reversible low-oxygen stress in apples were indistinguishable: both Fo and Falpha increased when O2 levels were lowered below the anaerobic compensation point (ACP); when gas levels returned to normoxia both parameters dipped below, then returned to, the original fluorescence baseline. The two parameters also responded similarly to the irreversible osmotic stress in grapes: in both cultivars, Falpha and Fo first decreased before reaching an inflection point at approximately 20% mass loss and then increased towards a second inflection point. However, the two parameters were not analogous under the irreversible osmotic stress; most notably, the relative Falpha values appeared to be lower than Fo during the later stages of dehydration. This was likely due to the influence of the Fm parameter and an overestimation of Falpha when measuring the fluorescence from healthy and responsive chloroplasts as found in grapes experiencing minimal water loss, but not in grapes undergoing moderate to severe dehydration. An examination of the data during a typical PFM scan reveals this fluorometer system may yield new fluorescence information with interesting biological applications.


Subject(s)
Chlorophyll/metabolism , Photosynthesis/physiology , Chlorophyll/chemistry , Fluorometry/instrumentation , Fluorometry/methods , Malus/metabolism , Species Specificity , Spectrometry, Fluorescence/instrumentation , Spectrometry, Fluorescence/methods , Vitis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...