Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Cells ; 12(15)2023 Aug 06.
Article in English | MEDLINE | ID: mdl-37566089

ABSTRACT

Multiple signaling pathways facilitate the survival and drug resistance of malignant B-cells by regulating their migration and adhesion to microenvironmental niches. NF-κB pathways are commonly dysregulated in mantle cell lymphoma (MCL), but the exact underlying mechanisms are not well understood. Here, using a co-culture model system, we show that the adhesion of MCL cells to stromal cells is associated with elevated levels of KDM6B histone demethylase mRNA in adherent cells. The inhibition of KDM6B activity, using either a selective inhibitor (GSK-J4) or siRNA-mediated knockdown, reduces MCL adhesion to stromal cells. We showed that KDM6B is required both for the removal of repressive chromatin marks (H3K27me3) at the promoter region of NF-κB encoding genes and for inducing the expression of NF-κB genes in adherent MCL cells. GSK-J4 reduced protein levels of the RELA NF-κB subunit and impaired its nuclear localization. We further demonstrated that some adhesion-induced target genes require both induced NF-κB and KDM6B activity for their induction (e.g., IL-10 cytokine gene), while others require induction of NF-κB but not KDM6B (e.g., CCR7 chemokine gene). In conclusion, KDM6B induces the NF-κB pathway at different levels in MCL, thereby facilitating MCL cell adhesion, survival, and drug resistance. KDM6B represents a novel potential therapeutic target for MCL.

2.
Cancers (Basel) ; 13(23)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34885204

ABSTRACT

The MYC transcription factor regulates a vast number of genes and is implicated in many human malignancies. In some hematological malignancies, MYC is frequently subject to missense mutations that enhance its transformation activity. Here, we use a novel murine cell system to (i) characterize the transcriptional effects of progressively increasing MYC levels as normal primary B-cells transform to lymphoma cells and (ii) determine how this gene regulation program is modified by lymphoma-associated MYC mutations (T58A and T58I) that enhance its transformation activity. Unlike many previous studies, the cell system exploits primary B-cells that are transduced to allow regulated MYC expression under circumstances where apoptosis and senescence pathways are abrogated by the over-expression of the Bcl-xL and BMI1 proteins. In such cells, transition from a normal to a lymphoma phenotype is directly dependent on the MYC expression level, without a requirement for secondary events that are normally required during MYC-driven oncogenic transformation. A generalized linear model approach allowed an integrated analysis of RNA sequencing data to identify regulated genes in relation to both progressively increasing MYC level and wild type or mutant status. Using this design, a total of 7569 regulated genes were identified, of which the majority (n = 7263) were regulated in response to progressively increased levels of wild type MYC, while a smaller number of genes (n = 917) were differentially regulated, compared to wild type MYC, in T58A MYC- and/or T58I MYC-expressing cells. Unlike most genes that are similarly regulated by both wild type and mutant MYC genes, the set of 917 genes did not significantly overlap with known lipopolysaccharide regulated genes, which represent genes regulated by MYC in normal B cells. The genes that were differently regulated in cells expressing mutant MYC proteins were significantly enriched in DNA replication and G2 phase to mitosis transition genes. Thus, mutants affecting MYC proteins may augment quantitative oncogenic effects on the expression of normal MYC-target genes with qualitative oncogenic effects, by which sets of cell cycle genes are abnormally targeted by MYC as B cells transition into lymphoma cells. The T58A and T58I mutations augment MYC-driven transformation by distinct mechanisms.

3.
Int J Mol Sci ; 22(12)2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34200679

ABSTRACT

Lymphocyte migration to and sequestration in specific microenvironments plays a crucial role in their differentiation and survival. Lymphocyte trafficking and homing are tightly regulated by signaling pathways and is mediated by cytokines, chemokines, cytokine/chemokine receptors and adhesion molecules. The production of cytokines and chemokines is largely controlled by transcription factors in the context of a specific epigenetic landscape. These regulatory factors are strongly interconnected, and they influence the gene expression pattern in lymphocytes, promoting processes such as cell survival. The epigenetic status of the genome plays a key role in regulating gene expression during many key biological processes, and it is becoming more evident that dysregulation of epigenetic mechanisms contributes to cancer initiation, progression and drug resistance. Here, we review the signaling pathways that regulate lymphoma cell migration and adhesion with a focus on Mantle cell lymphoma and highlight the fundamental role of epigenetic mechanisms in integrating signals at the level of gene expression throughout the genome.


Subject(s)
B-Lymphocytes/pathology , Cell Adhesion , Cell Movement , Epigenesis, Genetic , Lymphoma, Mantle-Cell/pathology , Tumor Microenvironment/immunology , Animals , Humans , Lymphoma, Mantle-Cell/immunology , Signal Transduction
4.
Int J Mol Sci ; 22(12)2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34198491

ABSTRACT

Rare germline pathogenic TP53 missense variants often predispose to a wide spectrum of tumors characterized by Li-Fraumeni syndrome (LFS) but a subset of variants is also seen in families with exclusively hereditary breast cancer (HBC) outcomes. We have developed a logistic regression model with the aim of predicting LFS and HBC outcomes, based on the predicted effects of individual TP53 variants on aspects of protein conformation. A total of 48 missense variants either unique for LFS (n = 24) or exclusively reported in HBC (n = 24) were included. LFS-variants were over-represented in residues tending to be buried in the core of the tertiary structure of TP53 (p = 0.0014). The favored logistic regression model describes disease outcome in terms of explanatory variables related to the surface or buried status of residues as well as their propensity to contribute to protein compactness or protein-protein interactions. Reduced, internally validated models discriminated well between LFS and HBC (C-statistic = 0.78-0.84; equivalent to the area under the ROC (receiver operating characteristic) curve), had a low risk for over-fitting and were well calibrated in relation to the known outcome risk. In conclusion, this study presents a phenotypic prediction model of LFS and HBC risk for germline TP53 missense variants, in an attempt to provide a complementary tool for future decision making and clinical handling.


Subject(s)
Breast Neoplasms/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Li-Fraumeni Syndrome/genetics , Mutation, Missense/genetics , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/genetics , Amino Acid Sequence , Female , Germ-Line Mutation/genetics , Humans , Logistic Models , Multivariate Analysis , Phenotype , Protein Conformation
5.
Prostaglandins Other Lipid Mediat ; 156: 106575, 2021 10.
Article in English | MEDLINE | ID: mdl-34116165

ABSTRACT

Human B-lymphocytes express 5-lipoxygenase (5-LOX) and 5-LOX activating protein (FLAP) and can convert arachidonic acid to leukotriene B4. Mantle cell lymphoma (MCL) cells contain similar amounts of 5-LOX as human neutrophils but the function and mechanism of activation of 5-LOX in MCL cells, and in normal B-lymphocytes, are unclear. Here we show that the intrinsic 5-LOX pathway in the MCL cell line JeKo-1 has an essential role in migration and adherence of the cells, which are important pathophysiological characteristics of B-cell lymphoma. Incubation of JeKo-1 with the FLAP inhibitor GSK2190915 or the 5-LOX inhibitor zileuton, at a concentration below 1 µM, prior to stimulation with the chemotactic agent CXCL12, led to a significant reduction of migration. CRISPR/Cas9 mediated deletion of ALOX5 gene in JeKo-1 cells also led to a significantly decreased migration of the cells. Furthermore, 5-LOX and FLAP inhibitors markedly decreased the adherence of JeKo-1 cells to stromal cells. In comparison, these drugs had a similar effect on adherence of JeKo-1 cells as the Bruton tyrosine kinase inhibitor ibrutinib, which has a proven anti-tumour effect. These results indicate that inhibition of 5-LOX may be a novel treatment for MCL and certain other B-cell lymphomas.


Subject(s)
Lymphoma, Mantle-Cell
6.
Cancers (Basel) ; 12(5)2020 May 02.
Article in English | MEDLINE | ID: mdl-32370190

ABSTRACT

Interactions between lymphoma cells and stromal cells play a key role in promoting tumor survival and development of drug resistance. We identified differences in key signaling pathways between the JeKo-1 and REC-1 mantle cell lymphoma (MCL) cell lines, displaying different patterns of stromal cell adhesion and chemotaxis towards stroma-conditioned medium. The identified adhesion-regulated genes reciprocated important aspects of microenvironment-mediated gene modulation in MCL patients. Five-hundred and ninety genes were differently regulated between the cell lines upon adhesion to stromal cells, while 32 genes were similarly regulated in both cell lines. Regulation of B-cell Receptor (BCR) signature genes in adherent cells was specific for JeKo-1. Inhibition of BCR using siRNA or clinically approved inhibitors, Ibrutinib and Acalabrutinib, decreased adhesion of JeKo-1, but not REC-1 cells. Cell surface levels of chemokine receptor CXCR4 were higher in JeKo-1, facilitating migration and adhesion of JeKo-1 but not REC-1 cells. Surface levels of ICAM1 adhesion protein differ for REC-1 and JeKo-1. While ICAM1 played a positive role in adherence of both cell lines to stromal cells, S1PR1 had an inhibitory effect. Our results provide a model framework for further investigation of mechanistic differences in patient-response to new pathway-specific drugs.

7.
Front Neurosci ; 14: 256, 2020.
Article in English | MEDLINE | ID: mdl-32372895

ABSTRACT

Amyloids are fibrillar protein aggregates associated with diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes and Creutzfeldt-Jakob disease. The process of amyloid polymerization involves three pathological protein transformations; from natively folded conformation to the cross-ß conformation, from biophysically soluble to insoluble, and from biologically functional to non-functional. While amyloids share a similar cross-ß conformation, the biophysical transformation can either take place spontaneously via a homogeneous nucleation mechanism (HON) or catalytically on an exogenous surface via a heterogeneous nucleation mechanism (HEN). Here, we postulate that the different nucleation pathways can serve as a mechanistic basis for an etiological classification of amyloidopathies, where hereditary forms generally follow the HON pathway, while sporadic forms follow seed-induced (prions) or surface-induced (including microbially induced) HEN pathways. Critically, the conformational and biophysical amyloid transformation results in loss-of-function (LOF) of the original natively folded and soluble protein. This LOF can, at least initially, be the mechanism of amyloid toxicity even before amyloid accumulation reaches toxic levels. By highlighting the important role of non-protein species in amyloid formation and LOF mechanisms of toxicity, we propose a generalized mechanistic framework that could help better understand the diverse etiology of amyloid diseases and offer new opportunities for therapeutic interventions, including replacement therapies.

8.
Int J Mol Sci ; 19(10)2018 Oct 10.
Article in English | MEDLINE | ID: mdl-30308971

ABSTRACT

Conformational protein properties are coupled to protein functionality and could provide a useful parameter for functional annotation of differentially expressed genes in transcriptome studies. The aim was to determine whether predicted intrinsic protein disorder was differentially associated with proteins encoded by genes that are differentially regulated in lymphoma cells upon interaction with stromal cells, an interaction that occurs in microenvironments, such as lymph nodes that are protective for lymphoma cells during chemotherapy. Intrinsic disorder protein properties were extracted from the Database of Disordered Protein Prediction (D²P²), which contains data from nine intrinsic disorder predictors. Proteins encoded by differentially regulated cell-adhesion regulated genes were enriched in intrinsically disordered regions (IDRs) compared to other genes both with regard to IDR number and length. The enrichment was further ascribed to down-regulated genes. Consistently, a higher proportion of proteins encoded by down-regulated genes contained at least one IDR or were completely disordered. We conclude that down-regulated genes in stromal cell-adherent lymphoma cells encode proteins that are characterized by elevated levels of intrinsically disordered conformation, indicating the importance of down-regulating functional mechanisms associated with intrinsically disordered proteins in these cells. Further, the approach provides a generally applicable and complementary alternative to classification of differentially regulated genes using gene ontology or pathway enrichment analysis.


Subject(s)
Cell Adhesion/genetics , Gene Expression Regulation, Neoplastic , Intrinsically Disordered Proteins/genetics , Lymphoma/genetics , Transcriptome , Gene Expression Profiling , Humans
10.
Biochim Biophys Acta Gen Subj ; 1862(6): 1452-1461, 2018 06.
Article in English | MEDLINE | ID: mdl-29550429

ABSTRACT

BACKGROUND: Adaptive mutations that alter protein functionality are enriched within intrinsically disordered protein regions (IDRs), thus conformational flexibility correlates with evolvability. Pre-structured motifs (PreSMos) with transient propensity for secondary structure conformation are believed to be important for IDR function. The glucocorticoid receptor tau1core transcriptional activation domain (GR tau1core) domain contains three α-helical PreSMos in physiological buffer conditions. METHODS: Sixty change-of-function mutants affecting the intrinsically disordered 58-residue GR tau1core were studied using disorder prediction and molecular dynamics simulations. RESULTS: Change-of-function mutations were partitioned into seven clusters based on their effect on IDR predictions and gene activation activity. Some mutations selected from clusters characterized by mutations altering the IDR prediction score, altered the apparent stability of the α-helical form of one of the PreSMos in molecular dynamics simulations, suggesting PreSMo stabilization or destabilization as strategies for functional adaptation. Indeed all tested gain-of-function mutations affecting this PreSMo were associated with increased stability of the α-helical PreSMo conformation, suggesting that PreSMo stabilization may be the main mechanism by which adaptive mutations can increase the activity of this IDR type. Some mutations did not appear to affect PreSMo stability. CONCLUSIONS: Changes in PreSMo stability account for the effects of a subset of change-of-function mutants affecting the GR tau1core IDR. GENERAL SIGNIFICANCE: Long IDRs occur in about 50% of human proteins. They are poorly characterized despite much recent attention. Our results suggest the importance of a subtle balance between PreSMo stability and IDR activity, which may provide a novel target for future pharmaceutical intervention.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Molecular Dynamics Simulation , Mutation , Protein Conformation, alpha-Helical , Receptors, Glucocorticoid/chemistry , Humans , Intrinsically Disordered Proteins/genetics , Receptors, Glucocorticoid/genetics , Transcriptional Activation
11.
Haematologica ; 103(4): 666-678, 2018 04.
Article in English | MEDLINE | ID: mdl-29449436

ABSTRACT

A subset of hematologic cancer patients is refractory to treatment or suffers relapse, due in part to minimal residual disease, whereby some cancer cells survive treatment. Cell-adhesion-mediated drug resistance is an important mechanism, whereby cancer cells receive survival signals via interaction with e.g. stromal cells. No genome-wide studies of in vitro systems have yet been performed to compare gene expression in different cell subsets within a co-culture and cells grown separately. Using RNA sequencing and species-specific read mapping, we compared transcript levels in human Jeko-1 mantle cell lymphoma cells stably adhered to mouse MS-5 stromal cells or in suspension within a co-culture or cultured separately as well as in stromal cells in co-culture or in separate culture. From 1050 differentially expressed transcripts in adherent mantle cell lymphoma cells, we identified 24 functional categories that together represent four main functional themes, anti-apoptosis, B-cell signaling, cell adhesion/migration and early mitosis. A comparison with previous mantle cell lymphoma and chronic lymphocytic leukemia studies, of gene expression differences between lymph node and blood, identified 116 genes that are differentially expressed in all three studies. From these genes, we suggest a core set of genes (CCL3, CCL4, DUSP4, ETV5, ICAM1, IL15RA, IL21R, IL4I1, MFSD2A, NFKB1, NFKBIE, SEMA7A, TMEM2) characteristic of cells undergoing cell-adhesion-mediated microenvironment signaling in mantle cell lymphoma/chronic lymphocytic leukemia. The model system developed and characterized here together with the core gene set will be useful for future studies of pathways that mediate increased cancer cell survival and drug resistance mechanisms.


Subject(s)
Cell Adhesion/physiology , Gene Expression Profiling , Lymphoma/pathology , Sequence Analysis, RNA , Stromal Cells/cytology , Animals , Cell Line , Cell Line, Tumor , Cell Survival , Coculture Techniques , Drug Resistance , Gene Expression Regulation, Neoplastic , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Lymphoma, Mantle-Cell/genetics , Lymphoma, Mantle-Cell/pathology , Mice , Paracrine Communication
12.
Oncotarget ; 6(10): 7804-14, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25762639

ABSTRACT

The molecular determinants of malignant cell behaviour in triple-negative breast cancer (TNBC) are poorly understood. Recent studies have shown that regulators of epithelial-mesenchymal transition (EMT) are potential therapeutic targets for TNBC. In this study, we demonstrate that the inflammatory cytokine TNFα induces EMT in TNBC cells via activation of AP-1 signaling and subsequently induces expression of the EMT regulator ZEB2. We also show that TNFα activates both the PI3K/Akt and MAPK/ERK pathways, which act upstream of AP-1. We further investigated in detail AP-1 regulation of ZEB2 expression. We show that two ZEB2 transcripts derived from distinct promoters are both expressed in breast cancer cell lines and breast tumor samples. Using the chromosome conformation capture assay, we demonstrate that AP-1, when activated by TNFα, binds to a site in promoter 1b of the ZEB2 gene where it regulates the expression of both promoter 1b and 1a, the latter via mediating long range chromatin interactions. Overall, this work provides a plausible mechanism for inflammation-induced metastatic potential in TNBC, involving a novel regulatory mechanism governing ZEB2 isoform expression.


Subject(s)
Chromatin/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcription Factor AP-1/genetics , Triple Negative Breast Neoplasms/genetics , Tumor Necrosis Factor-alpha/pharmacology , Cell Line, Tumor , Chromatin/genetics , Epithelial-Mesenchymal Transition , Female , Humans , Recombinant Proteins/pharmacology , Signal Transduction , Transcription Factor AP-1/metabolism , Transfection , Triple Negative Breast Neoplasms/metabolism , Zinc Finger E-box Binding Homeobox 2
13.
Nucleic Acids Res ; 42(9): 5505-17, 2014 May.
Article in English | MEDLINE | ID: mdl-24609384

ABSTRACT

Chromatin domain organization and the compartmentalized distribution of chromosomal regions are essential for packaging of deoxyribonucleic acid (DNA) in the eukaryotic nucleus as well as regulated gene expression. Nucleoli are the most prominent morphological structures of cell nuclei and nucleolar organization is coupled to cell growth. It has been shown that nuclear scaffold/matrix attachment regions often define the base of looped chromosomal domains in vivo and that they are thereby critical for correct chromosome architecture and gene expression. Here, we show regulated organization of mammalian ribosomal ribonucleic acid genes into distinct chromatin loops by tethering to nucleolar matrix via the non-transcribed inter-genic spacer region of the ribosomal DNA (rDNA). The rDNA gene loop structures are induced specifically upon growth stimulation and are dependent on the activity of the c-Myc protein. Matrix-attached rDNA genes are hypomethylated at the promoter and are thus available for transcriptional activation. rDNA genes silenced by methylation are not recruited to the matrix. c-Myc, which has been shown to induce rDNA transcription directly, is physically associated with rDNA gene looping structures and the intergenic spacer sequence in growing cells. Such a role of Myc proteins in gene activation has not been reported previously.


Subject(s)
Cell Nucleolus/metabolism , DNA, Ribosomal Spacer/genetics , Proto-Oncogene Proteins c-myc/physiology , Animals , Cell Nucleolus/genetics , Cell Proliferation , Chromatin Assembly and Disassembly , DNA, Ribosomal Spacer/metabolism , Epigenesis, Genetic , HEK293 Cells , HeLa Cells , Humans , Nucleic Acid Conformation , Rats
14.
PLoS One ; 8(9): e75057, 2013.
Article in English | MEDLINE | ID: mdl-24086436

ABSTRACT

Mammalian Myc proteins are important determinants of cell proliferation as well as the undifferentiated state of stem cells and their activity is frequently deregulated in cancer. Based mainly on conservation in the C-terminal DNA-binding and dimerization domain, Myc-like proteins have been reported in many simpler organisms within and outside the Metazoa but they have not been found in fungi or plants. Several important signature motifs defining mammalian Myc proteins are found in the N-terminal domain but the extent to which these are found in the Myc-like proteins from simpler organisms is not well established. The extent of N-terminal signature sequence conservation would give important insights about the evolution of Myc proteins and their current function in mammalian physiology and disease. In a systematic study of Myc-like proteins we show that N-terminal signature motifs are not readily detectable in individual Myc-like proteins from invertebrates but that weak similarities to Myc boxes 1 and 2 can be found in the N-termini of the simplest Metazoa as well as the unicellular choanoflagellate, Monosiga brevicollis, using multiple protein alignments. Phylogenetic support for the connections of these proteins to established Myc proteins is however poor. We show that the pattern of predicted protein disorder along the length of Myc proteins can be used as a complementary approach to making dendrograms of Myc proteins that aids the classification of Myc proteins. This suggests that the pattern of disorder within Myc proteins is more conserved through evolution than their amino acid sequence. In the disorder-based dendrograms the Myc-like proteins from simpler organisms, including M. brevicollis, are connected to established Myc proteins with a higher degree of certainty. Our results suggest that protein disorder based dendrograms may be of general significance for studying distant relationships between proteins, such as transcription factors, that have high levels of intrinsic disorder.


Subject(s)
Intrinsically Disordered Proteins/metabolism , Phylogeny , Proto-Oncogene Proteins c-myc/genetics , Amino Acid Motifs , Amino Acid Sequence , Amino Acid Substitution , Conserved Sequence , Humans , Molecular Sequence Data , Neoplasms/metabolism , Protein Structure, Tertiary , Proto-Oncogene Proteins c-myc/chemistry , Proto-Oncogene Proteins c-myc/metabolism , Sequence Alignment
15.
BMC Genomics ; 14: 479, 2013 Jul 16.
Article in English | MEDLINE | ID: mdl-23865462

ABSTRACT

BACKGROUND: Gcn5 belongs to a family of histone acetyltransferases (HATs) that regulate protein function by acetylation. Gcn5 plays several different roles in gene transcription throughout the genome but their characterisation by classical mutation approaches is hampered by the high degree of apparent functional redundancy between HAT proteins. RESULTS: Here we utilise the reduced redundancy associated with the transiently high levels of genomic reprogramming during stress adaptation as a complementary approach to understand the functions of redundant protein families like HATs. We show genome-wide evidence for two functionally distinct roles of Gcn5. First, Gcn5 transiently re-localises to the ORFs of long genes during stress adaptation. Taken together with earlier mechanistic studies, our data suggests that Gcn5 plays a genome- wide role in specifically increasing the transcriptional elongation of long genes, thus increasing the production efficiency of complete long transcripts. Second, we suggest that Gcn5 transiently interacts with histones close to the transcription start site of the many genes that it activates during stress adaptation by acetylation of histone H3K18, leading to histone depletion, probably as a result of nucleosome loss as has been described previously. CONCLUSIONS: We show that stress adaptation can be used to elucidate the functions of otherwise redundant proteins, like Gcn5, in gene transcription. Further, we show that normalization of chromatin-associated protein levels in ChIP experiments in relation to the histone levels may provide a useful complement to standard approaches. In the present study analysis of data in this way provides an alternative explanation for previously indicated repressive role of Gcn5 in gene transcription.


Subject(s)
Genome, Fungal/genetics , Histone Acetyltransferases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/physiology , Stress, Physiological/genetics , Acetylation , Adaptation, Physiological/genetics , Histone Acetyltransferases/genetics , Histones/metabolism , Open Reading Frames/genetics , Promoter Regions, Genetic/genetics , Protein Transport/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Time Factors , Transcription, Genetic/genetics
16.
Genome Biol ; 12(7): R65, 2011 Jul 19.
Article in English | MEDLINE | ID: mdl-21771306

ABSTRACT

BACKGROUND: Understanding the adaptive changes that alter the function of proteins during evolution is an important question for biology and medicine. The increasing number of completely sequenced genomes from closely related organisms, as well as individuals within species, facilitates systematic detection of recent selection events by means of comparative genomics. RESULTS: We have used genome-wide strain-specific single nucleotide polymorphism data from 64 strains of budding yeast (Saccharomyces cerevisiae or Saccharomyces paradoxus) to determine whether adaptive positive selection is correlated with protein regions showing propensity for different classes of structure conformation. Data from phylogenetic and population genetic analysis of 3,746 gene alignments consistently shows a significantly higher degree of positive Darwinian selection in intrinsically disordered regions of proteins compared to regions of alpha helix, beta sheet or tertiary structure. Evidence of positive selection is significantly enriched in classes of proteins whose functions and molecular mechanisms can be coupled to adaptive processes and these classes tend to have a higher average content of intrinsically unstructured protein regions. CONCLUSIONS: We suggest that intrinsically disordered protein regions may be important for the production and maintenance of genetic variation with adaptive potential and that they may thus be of central significance for the evolvability of the organism or cell in which they occur.


Subject(s)
Proteins/chemistry , Proteins/genetics , Proteome/genetics , Selection, Genetic , Adaptation, Biological , Codon , Genome, Fungal , Open Reading Frames , Polymorphism, Single Nucleotide , Protein Structure, Secondary , Proteome/metabolism , Saccharomycetales/genetics , Species Specificity
17.
PLoS One ; 5(6): e11009, 2010 Jun 08.
Article in English | MEDLINE | ID: mdl-20544037

ABSTRACT

We have previously demonstrated that subsets of Ssn6/Tup target genes have distinct requirements for the Schizosaccharomyces pombe homologs of the Tup1/Groucho/TLE co-repressor proteins, Tup11 and Tup12. The very high level of divergence in the histone interacting repression domains of the two proteins suggested that determinants distinguishing Tup11 and Tup12 might be located in this domain. Here we have combined phylogenetic and structural analysis as well as phenotypic characterization, under stress conditions that specifically require Tup12, to identify and characterize the domains involved in Tup12-specific action. The results indicate that divergence in the repression domain is not generally relevant for Tup12-specific function. Instead, we show that the more highly conserved C-terminal WD40 repeat domain of Tup12 is important for Tup12-specific function. Surface amino acid residues specific for the WD40 repeat domain of Tup12 proteins in different fission yeasts are clustered in blade 3 of the propeller-like structure that is characteristic of WD40 repeat domains. The Tup11 and Tup12 proteins in fission yeasts thus provide an excellent model system for studying the functional divergence of WD40 repeat domains.


Subject(s)
Repressor Proteins/physiology , Schizosaccharomyces pombe Proteins/physiology , Schizosaccharomyces/physiology , Repressor Proteins/chemistry , Repressor Proteins/genetics , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/genetics
18.
Epigenetics ; 5(3): 200-5, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20305389

ABSTRACT

The nucleolus is a dynamic region of the nucleus that is disassembled and reformed each cell cycle and whose size is correlated with cell growth rate. Nucleolar size is a prognostic measure of cancer disease severity and increasing evidence suggests a causative role of nucleolar lesions in many cancers. In recent work (Shiue et al. Oncogene 28, 1833-42, 2009) we showed that the c-Myc oncoprotein induces changes in the higher order structure of rDNA chromatin in the nucleolus of growth stimulated quiescent rat cells. Here we show that c-Myc induces similar changes in human cells, that c-Myc plays a role in the overall structural integrity of the nucleolus and that c-Myc and its antagonistic partner Mad1 interact to program the epigenetic status of rDNA chromatin. These changes are discussed in relation to current knowledge about nucleolar structure as well as the organization of chromosomes and transcription factories in nuclear regions outside the nucleolus.


Subject(s)
Cell Nucleolus/genetics , Cell Proliferation , Neoplasms/genetics , Neoplasms/pathology , Cell Cycle Proteins/metabolism , Cell Nucleolus/metabolism , Chromatin/genetics , Chromatin/metabolism , DNA, Ribosomal/genetics , Epigenesis, Genetic , Humans , Nuclear Proteins/metabolism , Proto-Oncogene Proteins c-myc/metabolism
19.
BMC Genomics ; 11: 200, 2010 Mar 25.
Article in English | MEDLINE | ID: mdl-20338033

ABSTRACT

BACKGROUND: Gcn5 is a transcriptional coactivator with histone acetyltransferase activity that is conserved with regard to structure as well as its histone substrates throughout the eukaryotes. Gene regulatory networks within cells are thought to be evolutionarily diverged. The use of evolutionarily divergent yeast species, such as S. cerevisiae and S. pombe, which can be studied under similar environmental conditions, provides an opportunity to examine the interface between conserved regulatory components and their cellular applications in different organisms. RESULTS: We show that Gcn5 is important for a common set of stress responses in evolutionarily diverged yeast species and that the activity of the conserved histone acetyltransferase domain is required. We define a group of KCl stress response genes in S. cerevisiae that are specifically dependent on Gcn5. Gcn5 is localised to many Gcn5-dependent genes including Gcn5 repressed targets such as FLO8. Gcn5 regulates divergent sets of KCl responsive genes in S. cerevisiae and S. pombe. Genome-wide localization studies showed a tendency for redistribution of Gcn5 during KCl stress adaptation in S. cerevisiae from short genes to the transcribed regions of long genes. An analogous redistribution was not observed in S. pombe. CONCLUSIONS: Gcn5 is required for the regulation of divergent sets of KCl stress-response genes in S. cerevisiae and S. pombe even though it is required a common group of stress responses, including the response to KCl. Genes that are physically associated with Gcn5 require its activity for their repression or activation during stress adaptation, providing support for a role of Gcn5 as a corepressor as well as a coactivator. The tendency of Gcn5 to re-localise to the transcribed regions of long genes during KCl stress adaptation suggests that Gcn5 plays a specific role in the expression of long genes under adaptive conditions, perhaps by regulating transcriptional elongation as has been seen for Gcn5 in S. pombe. Interestingly an analogous redistribution of Gcn5 is not seen in S. pombe. The study thus provides important new insights in relation to why coregulators like Gcn5 are required for the correct expression of some genes but not others.


Subject(s)
Histone Acetyltransferases/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Acetyltransferases/metabolism , Genome-Wide Association Study , Histone Acetyltransferases/metabolism , Potassium Chloride/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Stress, Physiological
20.
Cell Cycle ; 9(3): 467-71, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20081370

ABSTRACT

We previously reported genome-wide evidence that the Gcn5 histone acetyltransferase (HAT) is located in the transcribed region of highly expressed genes and that it plays an important role in transcriptional elongation in the fission yeast, Schizosaccharomyces pombe (EMBO Reports 2009; 10:1009-14). Furthermore, the specific interplay between Gcn5 and the Clr3 histone deacetylase (HDAC) controls the acetylation levels of lysine-14 in histone H3 in the same class of highly expressed genes. Mutants of histone H3 that cannot be acetylated at residue 14 show similar stress phenotypes to those observed for mutants lacking Gcn5. In this Extra View article we review these findings in relation to related literature and extend important aspects of the original study. Notably, Gcn5 and Gcn5-dependent acetylation of histone H3K14 tend to be more enriched in the upstream regions of genes that require Gcn5 for correct expression compared to genes that are independent of Gcn5. This suggests a critical role of Gcn5 in the transcriptional initiation of these genes. Gcn5 is however most highly enriched in the transcribed regions of these gene sets but there is no difference between Gcn5-dependent and Gcn5-independent gene sets. Thus we suggest that Gcn5 plays an important but redundant role in the transcriptional elongation of these genes. The Sir2 HDAC has a similar genomic localization and enzymatic activity to Clr3. We studied gcn5Deltasir2Delta double mutants that do not show a suppressed phenotype in relation to gcn5Delta single mutants, compared to gcn5Deltaclr3Delta mutants that do, in order to better understand the specificity of the interplay between Gcn5 and Clr3. In some classes of non-highly expressed genes the clr3Delta mutant tends to restore levels of histone H3K14 acetylation in the double mutant strain more effectively than sir2Delta.


Subject(s)
Histone Acetyltransferases/metabolism , Histone Deacetylases/metabolism , Schizosaccharomyces/enzymology , Schizosaccharomyces/genetics , Transcription, Genetic , Acetylation , Gene Deletion , Histones/metabolism , Phenotype , Protein Binding , Schizosaccharomyces pombe Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...