Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 2233, 2023 04 19.
Article in English | MEDLINE | ID: mdl-37076525

ABSTRACT

Bacterial cell growth and division require the coordinated action of enzymes that synthesize and degrade cell wall polymers. Here, we identify enzymes that cleave the D-arabinan core of arabinogalactan, an unusual component of the cell wall of Mycobacterium tuberculosis and other mycobacteria. We screened 14 human gut-derived Bacteroidetes for arabinogalactan-degrading activities and identified four families of glycoside hydrolases with activity against the D-arabinan or D-galactan components of arabinogalactan. Using one of these isolates with exo-D-galactofuranosidase activity, we generated enriched D-arabinan and used it to identify a strain of Dysgonomonas gadei as a D-arabinan degrader. This enabled the discovery of endo- and exo-acting enzymes that cleave D-arabinan, including members of the DUF2961 family (GH172) and a family of glycoside hydrolases (DUF4185/GH183) that display endo-D-arabinofuranase activity and are conserved in mycobacteria and other microbes. Mycobacterial genomes encode two conserved endo-D-arabinanases with different preferences for the D-arabinan-containing cell wall components arabinogalactan and lipoarabinomannan, suggesting they are important for cell wall modification and/or degradation. The discovery of these enzymes will support future studies into the structure and function of the mycobacterial cell wall.


Subject(s)
Mycobacterium tuberculosis , Polysaccharides , Humans , Polysaccharides/metabolism , Mycobacterium tuberculosis/metabolism , Glycoside Hydrolases/metabolism , Cell Wall/metabolism
3.
Nat Chem Biol ; 18(8): 841-849, 2022 08.
Article in English | MEDLINE | ID: mdl-35710619

ABSTRACT

Sulfated glycans are ubiquitous nutrient sources for microbial communities that have coevolved with eukaryotic hosts. Bacteria metabolize sulfated glycans by deploying carbohydrate sulfatases that remove sulfate esters. Despite the biological importance of sulfatases, the mechanisms underlying their ability to recognize their glycan substrate remain poorly understood. Here, we use structural biology to determine how sulfatases from the human gut microbiota recognize sulfated glycans. We reveal seven new carbohydrate sulfatase structures spanning four S1 sulfatase subfamilies. Structures of S1_16 and S1_46 represent novel structures of these subfamilies. Structures of S1_11 and S1_15 demonstrate how non-conserved regions of the protein drive specificity toward related but distinct glycan targets. Collectively, these data reveal that carbohydrate sulfatases are highly selective for the glycan component of their substrate. These data provide new approaches for probing sulfated glycan metabolism while revealing the roles carbohydrate sulfatases play in host glycan catabolism.


Subject(s)
Gastrointestinal Microbiome , Sulfatases , Bacteria/metabolism , Humans , Polysaccharides/chemistry , Sulfatases/chemistry , Sulfates/chemistry
4.
Mol Biol Evol ; 38(9): 3789-3803, 2021 08 23.
Article in English | MEDLINE | ID: mdl-34021750

ABSTRACT

Internalization of a bacteria by an archaeal cell expedited eukaryotic evolution. An important feature of the species that diversified into the great variety of eukaryotic life visible today was the ability to combat oxidative stress with a copper-zinc superoxide dismutase (CuZnSOD) enzyme activated by a specific, high-affinity copper chaperone. Adoption of a single protein interface that facilitates homodimerization and heterodimerization was essential; however, its evolution has been difficult to rationalize given the structural differences between bacterial and eukaryotic enzymes. In contrast, no consistent strategy for the maturation of periplasmic bacterial CuZnSODs has emerged. Here, 34 CuZnSODs are described that closely resemble the eukaryotic form but originate predominantly from aquatic bacteria. Crystal structures of a Bacteroidetes bacterium CuZnSOD portray both prokaryotic and eukaryotic characteristics and propose a mechanism for self-catalyzed disulfide maturation. Unification of a bacterial but eukaryotic-like CuZnSOD along with a ferredoxin-fold MXCXXC copper-binding domain within a single polypeptide created the advanced copper delivery system for CuZnSODs exemplified by the human copper chaperone for superoxide dismutase-1. The development of this system facilitated evolution of large and compartmentalized cells following endosymbiotic eukaryogenesis.


Subject(s)
Copper , Eukaryota , Bacteria/genetics , Bacteria/metabolism , Copper/metabolism , Eukaryota/metabolism , Humans , Superoxide Dismutase/chemistry , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Zinc
5.
Biochem Soc Trans ; 48(4): 1795-1806, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32794552

ABSTRACT

The efficacy of superoxide dismutase-1 (SOD1) folding impacts neuronal loss in motor system neurodegenerative diseases. Mutations can prevent SOD1 post-translational processing leading to misfolding and cytoplasmic aggregation in familial amyotrophic lateral sclerosis (ALS). Evidence of immature, wild-type SOD1 misfolding has also been observed in sporadic ALS, non-SOD1 familial ALS and Parkinson's disease. The copper chaperone for SOD1 (hCCS) is a dedicated and specific chaperone that assists SOD1 folding and maturation to produce the active enzyme. Misfolded or misfolding prone SOD1 also interacts with heat shock proteins and macrophage migration inhibitory factor to aid folding, refolding or degradation. Recognition of specific SOD1 structures by the molecular chaperone network and timely dissociation of SOD1-chaperone complexes are, therefore, important steps in SOD1 processing. Harnessing these interactions for therapeutic benefit is actively pursued as is the modulation of SOD1 behaviour with pharmacological and peptide chaperones. This review highlights the structural and mechanistic aspects of a selection of SOD1-chaperone interactions together with their impact on disease models.


Subject(s)
Molecular Chaperones/metabolism , Superoxide Dismutase-1/metabolism , Animals , Copper/metabolism , Heat-Shock Proteins/metabolism , Humans , Macrophage Migration-Inhibitory Factors/metabolism , Mutation , Protein Folding , Superoxide Dismutase-1/genetics
6.
iScience ; 23(6): 101159, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32480125

ABSTRACT

Mislocalization, cleavage, and aggregation of the human protein TDP-43 is found in many neurodegenerative diseases. As is the case with many other proteins that are completely or partially structurally disordered, production of full-length recombinant TDP-43 in the quantities necessary for structural characterization has proved difficult. We show that the full-length TDP-43 protein and two truncated N-terminal constructs 1-270 and 1-263 can be heterologously expressed in E. coli. Full-length TDP-43 could be prevented from aggregation during purification using a detergent. Crystals grown from an N-terminal construct (1-270) revealed only the N-terminal domain (residues 1-80) with molecules arranged as parallel spirals with neighboring molecules arranged in head-to-tail fashion. To obtain detergent-free, full-length TDP-43 we mutated all six tryptophan residues to alanine. This provided sufficient soluble protein to collect small-angle X-ray scattering data. Refining relative positions of individual domains and intrinsically disordered regions against this data yielded a model of full-length TDP-43.

7.
Commun Biol ; 3(1): 97, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32139772

ABSTRACT

Mutations to the gene encoding superoxide dismutase-1 (SOD1) were the first genetic elements discovered that cause motor neuron disease (MND). These mutations result in compromised SOD1 dimer stability, with one of the severest and most common mutations Ala4Val (A4V) displaying a propensity to monomerise and aggregate leading to neuronal death. We show that the clinically used ebselen and related analogues promote thermal stability of A4V SOD1 when binding to Cys111 only. We have developed a A4V SOD1 differential scanning fluorescence-based assay on a C6S mutation background that is effective in assessing suitability of compounds. Crystallographic data show that the selenium atom of these compounds binds covalently to A4V SOD1 at Cys111 at the dimer interface, resulting in stabilisation. This together with chemical amenability for hit expansion of ebselen and its on-target SOD1 pharmacological chaperone activity holds remarkable promise for structure-based therapeutics for MND using ebselen as a template.


Subject(s)
Azoles/chemistry , Azoles/pharmacology , Drug Design , Motor Neuron Disease/drug therapy , Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology , Superoxide Dismutase-1 , Amino Acid Substitution/genetics , Azoles/chemical synthesis , Azoles/therapeutic use , Crystallography, X-Ray , Drug Discovery/methods , Drug Evaluation, Preclinical/methods , Humans , Isoindoles , Models, Molecular , Molecular Chaperones/chemical synthesis , Molecular Chaperones/chemistry , Molecular Chaperones/therapeutic use , Molecular Docking Simulation , Motor Neuron Disease/genetics , Motor Neuron Disease/metabolism , Motor Neuron Disease/pathology , Mutant Proteins/chemistry , Mutant Proteins/drug effects , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation, Missense , Organoselenium Compounds/chemical synthesis , Organoselenium Compounds/isolation & purification , Organoselenium Compounds/therapeutic use , Protein Folding/drug effects , Protein Multimerization/drug effects , Protein Stability/drug effects , Protein Structure, Tertiary , Sulfur Compounds/chemical synthesis , Sulfur Compounds/chemistry , Superoxide Dismutase-1/chemistry , Superoxide Dismutase-1/drug effects , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Thermodynamics
8.
Q Rev Biophys ; 52: e12, 2019 11 25.
Article in English | MEDLINE | ID: mdl-31760962

ABSTRACT

Few proteins have come under such intense scrutiny as superoxide dismutase-1 (SOD1). For almost a century, scientists have dissected its form, function and then later its malfunction in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). We now know SOD1 is a zinc and copper metalloenzyme that clears superoxide as part of our antioxidant defence and respiratory regulation systems. The possibility of reduced structural integrity was suggested by the first crystal structures of human SOD1 even before deleterious mutations in the sod1 gene were linked to the ALS. This concept evolved in the intervening years as an impressive array of biophysical studies examined the characteristics of mutant SOD1 in great detail. We now recognise how ALS-related mutations perturb the SOD1 maturation processes, reduce its ability to fold and reduce its thermal stability and half-life. Mutant SOD1 is therefore predisposed to monomerisation, non-canonical self-interactions, the formation of small misfolded oligomers and ultimately accumulation in the tell-tale insoluble inclusions found within the neurons of ALS patients. We have also seen that several post-translational modifications could push wild-type SOD1 down this toxic pathway. Recently we have come to view ALS as a prion-like disease where both the symptoms, and indeed SOD1 misfolding itself, are transmitted to neighbouring cells. This raises the possibility of intervention after the initial disease presentation. Several small-molecule and biologic-based strategies have been devised which directly target the SOD1 molecule to change the behaviour thought to be responsible for ALS. Here we provide a comprehensive review of the many biophysical advances that sculpted our view of SOD1 biology and the recent work that aims to apply this knowledge for therapeutic outcomes in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/enzymology , Superoxide Dismutase-1/chemistry , Superoxide Dismutase-1/metabolism , Animals , Biophysical Phenomena , Humans
9.
Viruses ; 11(7)2019 07 06.
Article in English | MEDLINE | ID: mdl-31284608

ABSTRACT

Japanese encephalitis (JE) is inflammation and swelling of the brain caused by the JE virus (JEV), a mosquito-borne member of the Flavivirus family. There are around 68,000 JE cases worldwide each year, many of which result in permanent brain damage and death. There is no specific treatment for JE. Here we present the crystal structure of the JEV capsid protein, a potential drug target, at 1.98 Å, and compare it to other flavivirus capsid proteins. The JEV capsid has a helical secondary structure (α helixes 1-4) and a similar protein fold to the dengue virus (DENV), the West Nile virus (WNV), and the Zika virus (ZIKV) capsid proteins. It forms a homodimer by antiparallel pairing with another subunit (') through α-helix 1-1', 2-2', and 4-4' interactions. This dimeric form is believed to be the building block of the nucleocapsid. The flexibility of the N-terminal α helix-1 allows the formation of closed and open conformations with possible functional importance. The basic C-terminal pairing of α4-4' forms a coiled-coil-like structure, indicating possible nucleic acid binding functionality. However, a comparison with other nucleic acid interacting domains indicates that homodimerization would preclude binding. This is the first JEV capsid protein to be described and is an addition to the structural biology of the Flavivirus.


Subject(s)
Capsid Proteins/chemistry , Encephalitis Virus, Japanese/metabolism , Capsid Proteins/metabolism , Crystallography, X-Ray , Dengue Virus/metabolism , Encephalitis, Japanese/virology , Flavivirus/metabolism , Models, Molecular , Protein Conformation , Protein Conformation, alpha-Helical , Protein Domains , Sequence Alignment , West Nile virus/metabolism , Zika Virus/metabolism
10.
Acta Crystallogr D Struct Biol ; 75(Pt 7): 660-669, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31282475

ABSTRACT

Solute carriers are a large class of transporters that play key roles in normal and disease physiology. Among the solute carriers, heteromeric amino-acid transporters (HATs) are unique in their quaternary structure. LAT1-CD98hc, a HAT, transports essential amino acids and drugs across the blood-brain barrier and into cancer cells. It is therefore an important target both biologically and therapeutically. During the course of this work, cryo-EM structures of LAT1-CD98hc in the inward-facing conformation and in either the substrate-bound or apo states were reported to 3.3-3.5 Šresolution [Yan et al. (2019), Nature (London), 568, 127-130]. Here, these structures are analyzed together with our lower resolution cryo-EM structure, and multibody 3D auto-refinement against single-particle cryo-EM data was used to characterize the dynamics of the interaction of CD98hc and LAT1. It is shown that the CD98hc ectodomain and the LAT1 extracellular surface share no substantial interface. This allows the CD98hc ectodomain to have a high degree of movement within the extracellular space. The functional implications of these aspects are discussed together with the structure determination.


Subject(s)
Fusion Regulatory Protein 1, Heavy Chain/chemistry , Large Neutral Amino Acid-Transporter 1/chemistry , Protein Interaction Domains and Motifs , Cryoelectron Microscopy/methods , HEK293 Cells , Humans , Models, Molecular
11.
PLoS Biol ; 17(2): e3000141, 2019 02.
Article in English | MEDLINE | ID: mdl-30735496

ABSTRACT

Superoxide dismutase-1 (SOD1) maturation comprises a string of posttranslational modifications which transform the nascent peptide into a stable and active enzyme. The successive folding, metal ion binding, and disulphide acquisition steps in this pathway can be catalysed through a direct interaction with the copper chaperone for SOD1 (CCS). This process confers enzymatic activity and reduces access to noncanonical, aggregation-prone states. Here, we present the functional mechanisms of human copper chaperone for SOD1 (hCCS)-catalysed SOD1 activation based on crystal structures of reaction precursors, intermediates, and products. Molecular recognition of immature SOD1 by hCCS is driven by several interface interactions, which provide an extended surface upon which SOD1 folds. Induced-fit complexation is reliant on the structural plasticity of the immature SOD1 disulphide sub-loop, a characteristic which contributes to misfolding and aggregation in neurodegenerative disease. Complexation specifically stabilises the SOD1 disulphide sub-loop, priming it and the active site for copper transfer, while delaying disulphide formation and complex dissociation. Critically, a single destabilising amino acid substitution within the hCCS interface reduces hCCS homodimer affinity, creating a pool of hCCS available to interact with immature SOD1. hCCS substrate specificity, segregation between solvent and biological membranes, and interaction transience are direct results of this substitution. In this way, hCCS-catalysed SOD1 maturation is finessed to minimise copper wastage and reduce production of potentially toxic SOD1 species.


Subject(s)
Copper/chemistry , Molecular Chaperones/chemistry , Protein Processing, Post-Translational , Saccharomyces cerevisiae/chemistry , Amino Acid Sequence , Amino Acid Substitution , Binding Sites , Cloning, Molecular , Copper/metabolism , Disulfides/chemistry , Disulfides/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Evolution, Molecular , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Models, Molecular , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Folding , Protein Interaction Domains and Motifs , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Substrate Specificity
12.
ACS Catal ; 9(7): 6087-6099, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-32051772

ABSTRACT

It is generally assumed that tethering enhances rates of electron harvesting and delivery to active sites in multidomain enzymes by proximity and sampling mechanisms. Here, we explore this idea in a tethered 3-domain, trimeric copper-containing nitrite reductase. By reverse engineering, we find that tethering does not enhance the rate of electron delivery from its pendant cytochrome c to the catalytic copper-containing core. Using a linker that harbors a gatekeeper tyrosine in a nitrite access channel, the tethered haem domain enables catalysis by other mechanisms. Tethering communicates the redox state of the haem to the distant T2Cu center that helps initiate substrate binding for catalysis. It also tunes copper reduction potentials, suppresses reductive enzyme inactivation, enhances enzyme affinity for substrate, and promotes intercopper electron transfer. Tethering has multiple unanticipated beneficial roles, the combination of which fine-tunes function beyond simplistic mechanisms expected from proximity and restrictive sampling models.

13.
J Biomol Struct Dyn ; 37(15): 3936-3946, 2019 09.
Article in English | MEDLINE | ID: mdl-30286701

ABSTRACT

Formation of Cu, Zn superoxide dismutase 1 (SOD1) protein inclusions within motor neurons is one of the principal characteristics of SOD1-related amyotrophic lateral sclerosis (ALS). A hypothesis as to the nature of SOD1 aggregation implicates oxidative damage to a solvent-exposed tryptophan as causative. Here, we chart the discovery of a phenanthridinone based compound (Lig9) from the NCI Diversity Set III by rational methods by in silico screening and crystallographic validation. The crystal structure of the complex with SOD1, refined to 2.5 Å, revealed that Lig9 binds the SOD1 ß-barrel in the ß-strand 2 and 3 region which is known to scaffold SOD1 fibrillation. The phenanthridinone moiety makes a substantial π-π interaction with Trp32 of SOD1. The compound possesses a significant binding affinity for SOD1 and inhibits oxidation of Trp32; a critical residue for SOD1 aggregation. Thus, Lig9 is a good candidate from which to develop a new library of SOD1 aggregation inhibitors through protection of Trp32 oxidation. Communicated by Ramaswamy H. Sarma.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Drug Discovery , Models, Molecular , Oxidation-Reduction/drug effects , Superoxide Dismutase-1/antagonists & inhibitors , Tryptophan/metabolism , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/etiology , Amyotrophic Lateral Sclerosis/pathology , Databases, Pharmaceutical , Drug Evaluation, Preclinical , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Structure-Activity Relationship , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
14.
FEBS Lett ; 592(10): 1725-1737, 2018 05.
Article in English | MEDLINE | ID: mdl-29679384

ABSTRACT

Cu/Zn superoxide dismutase-1 (SOD1) mutations are causative for a subset of amyotrophic lateral sclerosis (ALS) cases. These mutations lead to structural instability, aggregation and ultimately motor neuron death. We have determined crystal structures of SOD1 in complex with a naphthalene-catechol-linked compound which binds with low micro-molar affinity to a site important for oxidative damage-induced aggregation. SOD1 Trp32 oxidation is indeed significantly inhibited by ligand binding. Our work shows how compound linking can be applied successfully to ligand interactions on the SOD1 surface to generate relatively good binding strength. The ligand, positioned in a region important for SOD1 fibrillation, offers the possibility that it, or a similar compound, could prevent the abnormal self-association that drives SOD1 toxicity in ALS.


Subject(s)
Superoxide Dismutase-1/metabolism , Binding Sites , Catechols/metabolism , Crystallography, X-Ray , Dimerization , Humans , Ligands , Mutation , Naphthalenes/metabolism , Oxidation-Reduction , Protein Binding , Protein Conformation , Superoxide Dismutase-1/chemistry , Superoxide Dismutase-1/genetics , Surface Plasmon Resonance , Tryptophan/metabolism
15.
Nat Commun ; 9(1): 1693, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29703933

ABSTRACT

Superoxide dismutase-1 (SOD1) mutants, including those with unaltered enzymatic activity, are known to cause amyotrophic lateral sclerosis (ALS). Several destabilizing factors contribute to pathogenicity including a reduced ability to complete the normal maturation process which comprises folding, metal cofactor acquisition, intra-subunit disulphide bond formation and dimerization. Immature SOD1 forms toxic oligomers and characteristic large insoluble aggregates within motor system cells. Here we report that the cysteine-reactive molecule ebselen efficiently confers the SOD1 intra-subunit disulphide and directs correct SOD1 folding, depopulating the globally unfolded precursor associated with aggregation and toxicity. Assisted formation of the unusual SOD1 cytosolic disulphide bond could have potential therapeutic applications. In less reducing environments, ebselen forms a selenylsulphide with Cys111 and restores the monomer-dimer equilibrium of A4V SOD1 to wild-type. Ebselen is therefore a potent bifunctional pharmacological chaperone for SOD1 that combines properties of the SOD1 chaperone hCCS and the recently licenced antioxidant drug, edaravone.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Antioxidants/pharmacology , Azoles/pharmacology , Organoselenium Compounds/pharmacology , Protein Folding/drug effects , Superoxide Dismutase-1/metabolism , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Antioxidants/therapeutic use , Asthma/drug therapy , Asthma/pathology , Azoles/therapeutic use , Crystallography, X-Ray , Cysteine/chemistry , Disulfides/chemistry , Edaravone/pharmacology , HEK293 Cells , Humans , Isoindoles , Molecular Chaperones/metabolism , Mutation , Nuclear Magnetic Resonance, Biomolecular , Organoselenium Compounds/therapeutic use , Protein Binding , Protein Multimerization/drug effects , Protein Stability/drug effects , Superoxide Dismutase-1/chemistry , Superoxide Dismutase-1/genetics
16.
Sci Signal ; 11(525)2018 04 10.
Article in English | MEDLINE | ID: mdl-29636388

ABSTRACT

The symbiotic nitrogen-fixing bacterium Bradyrhizobium japonicum is critical to the agro-industrial production of soybean because it enables the production of high yields of soybeans with little use of nitrogenous fertilizers. The FixL and FixJ two-component system (TCS) of this bacterium ensures that nitrogen fixation is only stimulated under conditions of low oxygen. When it is not bound to oxygen, the histidine kinase FixL undergoes autophosphorylation and transfers phosphate from adenosine triphosphate (ATP) to the response regulator FixJ, which, in turn, stimulates the expression of genes required for nitrogen fixation. We purified full-length B. japonicum FixL and FixJ proteins and defined their structures individually and in complex using small-angle x-ray scattering, crystallographic, and in silico modeling techniques. Comparison of active and inactive forms of FixL suggests that intramolecular signal transduction is driven by local changes in the sensor domain and in the coiled-coil region connecting the sensor and histidine kinase domains. We also found that FixJ exhibits conformational plasticity not only in the monomeric state but also in tetrameric complexes with FixL during phosphotransfer. This structural characterization of a complete TCS contributes both a mechanistic and evolutionary understanding to TCS signal relay, specifically in the context of the control of nitrogen fixation in root nodules.


Subject(s)
Bacterial Proteins/metabolism , Hemeproteins/metabolism , Histidine Kinase/metabolism , Oxygen/metabolism , Adenosine Triphosphate/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bradyrhizobium/genetics , Bradyrhizobium/metabolism , Crystallography, X-Ray , Gene Expression Regulation, Bacterial , Hemeproteins/chemistry , Hemeproteins/genetics , Histidine Kinase/chemistry , Histidine Kinase/genetics , Models, Molecular , Nitrogen Fixation/genetics , Phosphorylation , Protein Binding , Protein Domains , Signal Transduction/genetics
17.
J Virol ; 92(7)2018 04 01.
Article in English | MEDLINE | ID: mdl-29343583

ABSTRACT

Japanese encephalitis virus (JEV) is a mosquito-transmitted flavivirus that is closely related to other emerging viral pathogens, including dengue virus (DENV), West Nile virus (WNV), and Zika virus (ZIKV). JEV infection can result in meningitis and encephalitis, which in severe cases cause permanent brain damage and death. JEV occurs predominantly in rural areas throughout Southeast Asia, the Pacific Islands, and the Far East, causing around 68,000 cases of infection worldwide each year. In this report, we present a 2.1-Å-resolution crystal structure of the C-terminal ß-ladder domain of JEV nonstructural protein 1 (NS1-C). The surface charge distribution of JEV NS1-C is similar to those of WNV and ZIKV but differs from that of DENV. Analysis of the JEV NS1-C structure, with in silico molecular dynamics simulation and experimental solution small-angle X-ray scattering, indicates extensive loop flexibility on the exterior of the protein. This, together with the surface charge distribution, indicates that flexibility influences the protein-protein interactions that govern pathogenicity. These factors also affect the interaction of NS1 with the 22NS1 monoclonal antibody, which is protective against West Nile virus infection. Liposome and heparin binding assays indicate that only the N-terminal region of NS1 mediates interaction with membranes and that sulfate binding sites common to NS1 structures are not glycosaminoglycan binding interfaces. This report highlights several differences between flavivirus NS1 proteins and contributes to our understanding of their structure-pathogenic function relationships.IMPORTANCE JEV is a major cause of viral encephalitis in Asia. Despite extensive vaccination, epidemics still occur. Nonstructural protein 1 (NS1) plays a role in viral replication, and, because it is secreted, it can exhibit a wide range of interactions with host proteins. NS1 sequence and protein folds are conserved within the Flavivirus genus, but variations in NS1 protein-protein interactions among viruses likely contribute to differences in pathogenesis. Here, we compared characteristics of the C-terminal ß-ladder domain of NS1 between flaviviruses, including surface charge, loop flexibility, epitope cross-reactivity, membrane adherence, and glycosaminoglycan binding. These structural features are central to NS1 functionality and may provide insight into the development of diagnostic tests and therapeutics.


Subject(s)
Encephalitis Virus, Japanese/chemistry , Viral Nonstructural Proteins/chemistry , Crystallography, X-Ray , Encephalitis Virus, Japanese/genetics , Encephalitis Virus, Japanese/metabolism , Heparin/chemistry , Liposomes/chemistry , Protein Domains , Structure-Activity Relationship , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
18.
Sci Rep ; 7: 43580, 2017 03 08.
Article in English | MEDLINE | ID: mdl-28272458

ABSTRACT

LAT1 (SLC7A5) is a transporter for both the uptake of large neutral amino acids and a number of pharmaceutical drugs. It is expressed in numerous cell types including T-cells, cancer cells and brain endothelial cells. However, mechanistic knowledge of how it functions and its interactions with lipids are unknown or limited due to inability of obtaining stable purified protein in sufficient quantities. Our data show that depleting cellular cholesterol reduced the Vmax but not the Km of the LAT1 mediated uptake of a model substrate into cells (L-DOPA). A soluble cholesterol analogue was required for the stable purification of the LAT1 with its chaperon CD98 (4F2hc,SLC3A2) and that this stabilised complex retained the ability to interact with a substrate. We propose cholesterol interacts with the conserved regions in the LAT1 transporter that have been shown to bind to cholesterol/CHS in Drosophila melanogaster dopamine transporter. In conclusion, LAT1 is modulated by cholesterol impacting on its stability and transporter activity. This novel finding has implications for other SLC7 family members and additional eukaryotic transporters that contain the LeuT fold.


Subject(s)
Cholesterol/metabolism , Large Neutral Amino Acid-Transporter 1/metabolism , Membrane Lipids/metabolism , Amino Acid Motifs , Amino Acid Sequence , Amino Acids/metabolism , Binding Sites , Biological Transport/drug effects , Cholesterol/chemistry , Fusion Regulatory Protein-1/metabolism , Gene Expression , Humans , Kinetics , Large Neutral Amino Acid-Transporter 1/chemistry , Large Neutral Amino Acid-Transporter 1/genetics , Levodopa/metabolism , Levodopa/pharmacology , Lipid Metabolism/drug effects , Models, Molecular , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs
19.
Sci Rep ; 6: 27691, 2016 06 10.
Article in English | MEDLINE | ID: mdl-27282955

ABSTRACT

A proportion of Amyotrophic lateral sclerosis (ALS) cases result from impaired mutant superoxide dismutase-1 (SOD1) maturation. The copper chaperone for SOD1 (hCCS) forms a transient complex with SOD1 and catalyses the final stages of its maturation. We find that a neurodegenerative disease-associated hCCS mutation abrogates the interaction with SOD1 by inhibiting hCCS zinc binding. Analogously, SOD1 zinc loss has a detrimental effect on the formation, structure and disassociation of the hCCS-SOD1 heterodimer. This suggests that hCCS functionality is impaired by ALS mutations that reduce SOD1 zinc affinity. Furthermore, stabilization of wild-type SOD1 by chemical modification including cisplatination, inhibits complex formation. We hypothesize that drug molecules designed to stabilize ALS SOD1 mutants that also target the wild-type form will lead to characteristics common in SOD1 knock-outs. Our work demonstrates the applicability of chromatographic SAXS when studying biomolecules predisposed to aggregation or dissociation; attributes frequently reported for complexes involved in neurodegenerative disease.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Molecular Chaperones/chemistry , Superoxide Dismutase-1/chemistry , Amyotrophic Lateral Sclerosis/metabolism , Binding Sites , Humans , Molecular Chaperones/metabolism , Mutation , Protein Binding , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Zinc/metabolism
20.
Proc Natl Acad Sci U S A ; 111(11): 4309-14, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24591609

ABSTRACT

Over the last two decades many secrets of the age-related human neural proteinopathies have been revealed. A common feature of these diseases is abnormal, and possibly pathogenic, aggregation of specific proteins in the effected tissue often resulting from inherent or decreased structural stability. An archetype example of this is superoxide dismutase-1, the first genetic factor to be linked with amyotrophic lateral sclerosis (ALS). Mutant or posttranslationally modified TAR DNA binding protein-32 (TDP-43) is also strongly associated with ALS and an increasingly large number of other neurodegenerative diseases, including frontotemporal lobar degeneration (FTLD). Cytoplasmic mislocalization and elevated half-life is a characteristic of mutant TDP-43. Furthermore, patient age at the onset of disease symptoms shows a good inverse correlation with mutant TDP-43 half-life. Here we show that ALS and FTLD-associated TDP-43 mutations in the central nucleic acid binding domains lead to elevated half-life and this is commensurate with increased thermal stability and inhibition of aggregation. It is achieved without impact on secondary, tertiary, or quaternary structure. We propose that tighter structural cohesion contributes to reduced protein turnover, increasingly abnormal proteostasis and, ultimately, faster onset of disease symptoms. These results contrast our perception of neurodegenerative diseases as misfolded proteinopathies and delineate a novel path from the molecular characteristics of mutant TDP-43 to aberrant cellular effects and patient phenotype.


Subject(s)
DNA-Binding Proteins/genetics , Neurodegenerative Diseases/epidemiology , Neurodegenerative Diseases/genetics , Fluorescence , Half-Life , Humans , Mutation/genetics , Neurodegenerative Diseases/physiopathology , Protein Stability , Scattering, Small Angle
SELECTION OF CITATIONS
SEARCH DETAIL
...