Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
PLoS One ; 18(12): e0296128, 2023.
Article in English | MEDLINE | ID: mdl-38128024

ABSTRACT

Salinization of coastal freshwater wetlands is an increasingly common and widespread phenomenon resulting from climate change. The ecosystem consequences of added salinity are poorly constrained and highly variable across prior observational and experimental studies. We added 1.8 metric tons of marine salts to replicated 200 m2 plots within a restored forested wetland in Eastern North Carolina over the course of four years. Based on prior small-scale experiments at this site, we predicted that salinization would lead to slower tree growth and suppressed soil carbon cycling. Results from this large-scale field experiment were subtle and inconsistent over space and time. By the fourth year of the experiment, we observed the predicted suppression of soil respiration and a reduction of water extractable carbon from soils receiving salt treatments. However, we found no cumulative effects of four years of salinization on total soil carbon stocks, tree growth, or root biomass. We observed substantial variation in soil solution chemistry (notably, pH and base saturation) across replicated treatment blocks; the effective salt levels, ionic composition, and pH varied following treatment depending upon pre-existing differences in edaphic factors. Our multi-year monitoring also revealed an underlying trend of wetland acidification across the entire site, a suspected effect of ecosystem recovery following wetland restoration on former agricultural land. The overwhelming resistance to our salt treatments could be attributed to the vigor of a relatively young, healthy wetland ecosystem. The heterogeneous responses to salt that we observed over space and time merits further investigation into the environmental factors that control carbon cycling in wetlands. This work highlights the importance of multi-year, large-scale field experiments for investigating ecosystem responses to global environmental change.


Subject(s)
Forests , Sodium Chloride , Wetlands , Carbon , Soil/chemistry , Trees
2.
Eur J Nucl Med Mol Imaging ; 49(11): 3797-3808, 2022 09.
Article in English | MEDLINE | ID: mdl-35596745

ABSTRACT

PURPOSE: [18F]-labeled positron emission tomography (PET) radioligands permit in vivo assessment of Alzheimer's disease biomarkers, including aggregated neurofibrillary tau (NFT) with [18F]flortaucipir. Due to structural similarities of flortaucipir with some monoamine oxidase A (MAO-A) inhibitors, this study aimed to evaluate flortaucipir binding to MAO-A and MAO-B and any potential impact on PET interpretation. METHODS: [18F]Flortaucipir autoradiography was performed on frozen human brain tissue slices, and PET imaging was conducted in rats. Dissociation constants were determined by saturation binding, association and dissociation rates were measured by kinetic binding experiments, and IC50 values were determined by competition binding. RESULTS: Under stringent wash conditions, specific [18F]flortaucipir binding was observed on tau NFT-rich Alzheimer's disease tissue and not control tissue. In vivo PET experiments in rats revealed no evidence of [18F]flortaucipir binding to MAO-A; pre-treatment with MAO inhibitor pargyline did not impact uptake or wash-out of [18F]flortaucipir. [18F]Flortaucipir bound with low nanomolar affinity to human MAO-A in a microsomal preparation in vitro but with a fast dissociation rate relative to MAO-A ligand fluoroethyl-harmol, consistent with no observed in vivo binding in rats of [18F]flortaucipir to MAO-A. Direct binding of flortaucipir to human MAO-B was not detected in a microsomal preparation. A high concentration of flortaucipir (IC50 of 1.3 µM) was found to block binding of the MAO-B ligand safinamide to MAO-B on microsomes suggesting that, at micromolar concentrations, flortaucipir weakly binds to MAO-B in vitro. CONCLUSION: These data suggest neither MAO-A nor MAO-B binding will contribute significantly to the PET signal in cortical target areas relevant to the interpretation of [18F]flortaucipir.


Subject(s)
Alzheimer Disease , Alzheimer Disease/metabolism , Animals , Brain/diagnostic imaging , Brain/metabolism , Carbolines , Humans , Ligands , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/pharmacology , Positron-Emission Tomography/methods , Rats , tau Proteins/metabolism
3.
Ecol Appl ; 31(5): e02339, 2021 07.
Article in English | MEDLINE | ID: mdl-33817890

ABSTRACT

Climate change is driving ecological shifts in coastal regions of the world, where low topographic relief makes ecosystems particularly vulnerable to sea-level rise, salinization, storm surge, and other effects of global climate change. The consequences of rising water tables and salinity can penetrate well inland, and lead to particularly dramatic changes in freshwater forested wetlands dominated by tree species with low salt tolerance. The resulting loss of coastal forests could have significant implications to the coastal carbon cycle. We quantified the rates of vegetation change including land loss, forest loss, and shrubland expansion in North Carolina's largest coastal wildlife refuge over 35 yr. Despite its protected status, and in the absence of any active forest management, 32% (31,600 hectares) of the refuge area has changed landcover classification during the study period. A total of 1,151 hectares of land was lost to the sea and ~19,300 hectares of coastal forest habitat was converted to shrubland or marsh habitat. As much as 11% of all forested cover in the refuge transitioned to a unique land cover type-"ghost forest"-characterized by standing dead trees and fallen tree trunks. The formation of this ghost forest transition state peaked prominently between 2011 and 2012, following Hurricane Irene and a 5-yr drought, with 4,500 ± 990 hectares of ghost forest forming during that year alone. This is the first attempt to map and quantify coastal ghost forests using remote sensing. Forest losses were greatest in the eastern portion of the refuge closest to the Croatan and Pamlico Sounds, but also occurred much further inland in low-elevation areas and alongside major canals. These unprecedented rates of deforestation and land cover change due to climate change may become the status quo for coastal regions worldwide, with implications for wetland function, wildlife habitat, and global carbon cycling.


Subject(s)
Ecosystem , Sea Level Rise , Climate Change , Conservation of Natural Resources , Forests , Wetlands
4.
Ann Bot ; 127(4): 543-552, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33038232

ABSTRACT

BACKGROUND AND AIMS: Understanding impacts of altered disturbance regimes on community structure and function is a key goal for community ecology. Functional traits link species composition to ecosystem functioning. Changes in the distribution of functional traits at community scales in response to disturbance can be driven not only by shifts in species composition, but also by shifts in intraspecific trait values. Understanding the relative importance of these two processes has important implications for predicting community responses to altered disturbance regimes. METHODS: We experimentally manipulated fire return intervals in replicated blocks of a fire-adapted, longleaf pine (Pinus palustris) ecosystem in North Carolina, USA and measured specific leaf area (SLA), leaf dry matter content (LDMC) and compositional responses along a lowland to upland gradient over a 4 year period. Plots were burned between zero and four times. Using a trait-based approach, we simulate hypothetical scenarios which allow species presence, abundance or trait values to vary over time and compare these with observed traits to understand the relative contributions of each of these three processes to observed trait patterns at the study site. We addressed the following questions. (1) How do changes in the fire regime affect community composition, structure and community-level trait responses? (2) Are these effects consistent across a gradient of fire intensity? (3) What are the relative contributions of species turnover, changes in abundance and changes in intraspecific trait values to observed changes in community-weighted mean (CWM) traits in response to altered fire regime? KEY RESULTS: We found strong evidence that altered fire return interval impacted understorey plant communities. The number of fires a plot experienced significantly affected the magnitude of its compositional change and shifted the ecotone boundary separating shrub-dominated lowland areas from grass-dominated upland areas, with suppression sites (0 burns) experiencing an upland shift and annual burn sites a lowland shift. We found significant effects of burn regimes on the CWM of SLA, and that observed shifts in both SLA and LDMC were driven primarily by intraspecific changes in trait values. CONCLUSIONS: In a fire-adapted ecosystem, increased fire frequency altered community composition and structure of the ecosystem through changes in the position of the shrub line. We also found that plant traits responded directionally to increased fire frequency, with SLA decreasing in response to fire frequency across the environmental gradient. For both SLA and LDMC, nearly all of the observed changes in CWM traits were driven by intraspecific variation.


Subject(s)
Ecosystem , Fires , Ecology , Phenotype , Plant Leaves
5.
J Anim Ecol ; 89(8): 1788-1798, 2020 08.
Article in English | MEDLINE | ID: mdl-32367582

ABSTRACT

Body size influences an individual's physiology and the nature of its intra- and interspecific interactions. Changes in this key functional trait can therefore have important implications for populations as well. For example, among invertebrates, there is typically a positive correlation between female body size and reproductive output. Increasing body size can consequently trigger changes in population density, population structure (e.g. adult to juvenile ratio) and the strength of intraspecific competition. Body size changes have been documented in several species in the Arctic, a region that is warming rapidly. In particular, wolf spiders, one of the most abundant arctic invertebrate predators, are becoming larger and therefore more fecund. Whether these changes are affecting their populations and role within food webs is currently unclear. We investigated the population structure and feeding ecology of the dominant wolf spider species Pardosa lapponica at two tundra sites where adult spiders naturally differ in mean body size. Additionally, we performed a mesocosm experiment to investigate how variation in wolf spider density, which is likely to change as a function of body size, influences feeding ecology and its sensitivity to warming. We found that juvenile abundance is negatively associated with female size and that wolf spiders occupied higher trophic positions where adult females were larger. Because female body size is positively related to fecundity in P. lapponica, the unexpected finding of fewer juveniles with larger females suggests an increase in density-dependent cannibalism as a result of increased intraspecific competition for resources. Higher rates of density-dependent cannibalism are further supported by the results from our mesocosm experiment, in which individuals occupied higher trophic positions in plots with higher wolf spider densities. We observed no changes in wolf spider feeding ecology in association with short-term experimental warming. Our results suggest that body size variation in wolf spiders is associated with variation in intraspecific competition, feeding ecology and population structure. Given the widespread distribution of wolf spiders in arctic ecosystems, body size shifts in these predators as a result of climate change could have implications for lower trophic levels and for ecosystem functioning.


Subject(s)
Spiders , Animals , Arctic Regions , Body Size , Cannibalism , Ecosystem , Female
7.
Ecol Appl ; 30(4): e02087, 2020 06.
Article in English | MEDLINE | ID: mdl-32017309

ABSTRACT

Rare species reintroductions are an increasingly common conservation strategy, but often result in poor survival of reintroduced individuals. Reintroduction sites are chosen primarily based on historical occupancy and/or abiotic properties of the site, with much less consideration given to properties of the larger biotic community. However, ecological niche theory suggests that the ability to coexist with other species is determined in part by the degree of functional similarity between species. The degree to which functional similarity affects the survival of reintroduced plants is poorly understood, but has important implications for the allocation of limited conservation resources. We collected a suite of abiotic, biotic, and functional trait variables centered on outplanted individuals from four reintroduced rare plant species and used logistic regression and model selection to assess their influence on individual survival. We show that higher functional similarity between reintroduced individuals and the local community, measured by differences between their multivariate functional traits and the community-weighted mean traits of their immediate neighbors, increases survival and is a stronger predictor of survival than local variation in abiotic factors, suggesting that the functional composition of the biotic community should be incorporated into site selection to improve reintroduction success.


Subject(s)
Ecosystem , Plants , Humans
8.
Ann Bot ; 125(2): 255-264, 2020 02 03.
Article in English | MEDLINE | ID: mdl-30953436

ABSTRACT

BACKGROUND AND AIMS: Coastal plant communities globally are highly vulnerable to future sea-level rise and storm damage, but the extent to which these habitats are affected by the various environmental perturbations associated with chronic salinization remains unclear. In this study, we examine the relationship between North Carolina wetland tree community composition and basal area change and indicators of salinization such as soil salt ion content and elevation. METHODS: We surveyed 34 forest plots in forested, freshwater wetlands across the Albemarle-Pamlico Peninsula. A subset of our study sites had been sampled during the previous decade as part of the Carolina Vegetation Survey, enabling us to investigate the environmental effects on current community structure, and community change over time. KEY RESULTS: Multi-variate (ordination) analysis and linear regression models of tree community composition revealed that elevation and soil salt content were correlated with changes in total site tree basal area. Shifts in tree community composition were, however, only weakly correlated with indicators of salinization, specifically elevation, soil sulphate and sodium, but not chloride. While the majority of plots experienced gains in basal area over the past decade, consistent with secondary succession, sites with high soil salt content or low elevation experienced basal area (biomass) loss during the same period. CONCLUSIONS: The key factors associated with chronic saltwater intrusion (soil ion content) likely explain recent changes in tree biomass, and potential shifts in community composition in low-elevation sites along the North Carolina coast. Not only is it probable that other coastal forest ecosystems worldwide will experience similar stressors and shifts in community biomass and structure as sea levels rise, but the ability of these habitats to deliver key ecosystem services like carbon sequestration and flood defence will be compromised as a result.


Subject(s)
Ecosystem , Trees , North Carolina , Salinity , Soil , Wetlands
9.
Ecology ; 101(3): e02956, 2020 03.
Article in English | MEDLINE | ID: mdl-31840237

ABSTRACT

Whole microbial communities regularly merge with one another, often in tandem with their environments, in a process called community coalescence. Such events impose substantial changes: abiotic perturbation from environmental blending and biotic perturbation of community merging. We used an aquatic mixing experiment to unravel the effects of these perturbations on the whole microbiome response and on the success of individual taxa when distinct freshwater and marine communities coalesce. We found that an equal mix of freshwater and marine habitats and blended microbiomes resulted in strong convergence of the community structure toward that of the marine microbiome. The enzymatic potential of these blended microbiomes in mixed media also converged toward that of the marine, with strong correlations between the multivariate response patterns of the enzymes and of community structure. Exposing each endmember inocula to an axenic equal mix of their freshwater and marine source waters led to a 96% loss of taxa from our freshwater microbiomes and a 66% loss from our marine microbiomes. When both inocula were added together to this mixed environment, interactions amongst the communities led to a further loss of 29% and 49% of freshwater and marine taxa, respectively. Under both the axenic and competitive scenarios, the diversity lost was somewhat counterbalanced by increased abundance of microbial taxa that were too rare to detect in the initial inocula. Our study emphasizes the importance of the rare biosphere as a critical component of microbial community responses to community coalescence.


Subject(s)
Bacteria , Microbiota , Bacteria/genetics , Fresh Water , Phylogeny , RNA, Ribosomal, 16S
10.
Environ Microbiol ; 21(10): 3653-3668, 2019 10.
Article in English | MEDLINE | ID: mdl-31125479

ABSTRACT

A majority of environmental studies describe microbiomes at coarse scales of taxonomic resolution (bacterial community, phylum), ignoring key ecological knowledge gained from finer-scales and microbial indicator taxa. Here, we characterized the distribution of 940 bacterial taxa from 41 streams along an urbanization gradient (0%-83% developed watershed area) in the Raleigh-Durham area of North Carolina (USA). Using statistical approaches derived from macro-organismal ecology, we found that more bacterial taxa were classified as intolerant than as tolerant to increasing watershed urbanization (143 vs 48 OTUs), and we identified a threshold of 12.1% developed watershed area beyond which the majority of intolerant taxa were lost from streams. Two bacterial families strongly decreased with urbanization: Acidobacteriaceae (Acidobacteria) and Xanthobacteraceae (Alphaproteobacteria). Tolerant taxa were broadly distributed throughout the bacterial phylogeny, with members of the Comamonadaceae family (Betaproteobacteria) presenting the highest number of tolerant taxa. Shifts in microbial community structure were strongly correlated with a stream biotic index, based on macroinvertebrate composition, suggesting that microbial assemblages could be used to establish biotic criteria for monitoring aquatic ecosystems. In addition, our study shows that classic methods in community ecology can be applied to microbiome datasets to identify reliable microbial indicator taxa and determine the environmental constraints on individual taxa distributions along environmental gradients.


Subject(s)
Bacteria/classification , Bacteria/isolation & purification , Rivers/microbiology , Urbanization , Water Microbiology , Ecosystem , Environmental Monitoring , North Carolina
11.
Nat Ecol Evol ; 3(3): 400-406, 2019 03.
Article in English | MEDLINE | ID: mdl-30718853

ABSTRACT

Leaf traits are frequently measured in ecology to provide a 'common currency' for predicting how anthropogenic pressures impact ecosystem function. Here, we test whether leaf traits consistently respond to experimental treatments across 27 globally distributed grassland sites across 4 continents. We find that specific leaf area (leaf area per unit mass)-a commonly measured morphological trait inferring shifts between plant growth strategies-did not respond to up to four years of soil nutrient additions. Leaf nitrogen, phosphorus and potassium concentrations increased in response to the addition of each respective soil nutrient. We found few significant changes in leaf traits when vertebrate herbivores were excluded in the short-term. Leaf nitrogen and potassium concentrations were positively correlated with species turnover, suggesting that interspecific trait variation was a significant predictor of leaf nitrogen and potassium, but not of leaf phosphorus concentration. Climatic conditions and pretreatment soil nutrient levels also accounted for significant amounts of variation in the leaf traits measured. Overall, we find that leaf morphological traits, such as specific leaf area, are not appropriate indicators of plant response to anthropogenic perturbations in grasslands.


Subject(s)
Grassland , Plant Leaves/physiology , Plant Physiological Phenomena , Magnoliopsida/anatomy & histology , Magnoliopsida/physiology , Nutrients/metabolism , Plant Leaves/anatomy & histology
12.
Nat Microbiol ; 3(12): 1441-1450, 2018 12.
Article in English | MEDLINE | ID: mdl-30374168

ABSTRACT

Resource limitation is a fundamental factor governing the composition and function of ecological communities. However, the role of resource supply in structuring the intestinal microbiome has not been established and represents a challenge for mammals that rely on microbial symbionts for digestion: too little supply might starve the microbiome while too much might starve the host. We present evidence that microbiota occupy a habitat that is limited in total nitrogen supply within the large intestines of 30 mammal species. Lowering dietary protein levels in mice reduced their faecal concentrations of bacteria. A gradient of stoichiometry along the length of the gut was consistent with the hypothesis that intestinal nitrogen limitation results from host absorption of dietary nutrients. Nitrogen availability is also likely to be shaped by host-microbe interactions: levels of host-secreted nitrogen were altered in germ-free mice and when bacterial loads were reduced via experimental antibiotic treatment. Single-cell spectrometry revealed that members of the phylum Bacteroidetes consumed nitrogen in the large intestine more readily than other commensal taxa did. Our findings support a model where nitrogen limitation arises from preferential host use of dietary nutrients. We speculate that this resource limitation could enable hosts to regulate microbial communities in the large intestine. Commensal microbiota may have adapted to nitrogen-limited settings, suggesting one reason why excess dietary protein has been associated with degraded gut-microbial ecosystems.


Subject(s)
Bacteria/metabolism , Gastrointestinal Microbiome/physiology , Intestine, Large/metabolism , Intestine, Large/microbiology , Mammals/microbiology , Nitrogen/metabolism , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Carbon/metabolism , Diet , Dietary Proteins , Feces/microbiology , Host Microbial Interactions/physiology , Mice , RNA, Ribosomal, 16S/genetics , Symbiosis
13.
Proc Natl Acad Sci U S A ; 115(32): E7541-E7549, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30038011

ABSTRACT

Predators can disproportionately impact the structure and function of ecosystems relative to their biomass. These effects may be exacerbated under warming in ecosystems like the Arctic, where the number and diversity of predators are low and small shifts in community interactions can alter carbon cycle feedbacks. Here, we show that warming alters the effects of wolf spiders, a dominant tundra predator, on belowground litter decomposition. Specifically, while high densities of wolf spiders result in faster litter decomposition under ambient temperatures, they result, instead, in slower decomposition under warming. Higher spider densities are also associated with elevated levels of available soil nitrogen, potentially benefiting plant production. Changes in decomposition rates under increased wolf spider densities are accompanied by trends toward fewer fungivorous Collembola under ambient temperatures and more Collembola under warming, suggesting that Collembola mediate the indirect effects of wolf spiders on decomposition. The unexpected reversal of wolf spider effects on Collembola and decomposition suggest that in some cases, warming does not simply alter the strength of top-down effects but, instead, induces a different trophic cascade altogether. Our results indicate that climate change-induced effects on predators can cascade through other trophic levels, alter critical ecosystem functions, and potentially lead to climate feedbacks with important global implications. Moreover, given the expected increase in wolf spider densities with climate change, our findings suggest that the observed cascading effects of this common predator on detrital processes could potentially buffer concurrent changes in decomposition rates.


Subject(s)
Food Chain , Global Warming , Soil Microbiology , Soil/chemistry , Tundra , Animals , Arctic Regions , Biomass , Carbon Cycle , Fungi/chemistry , Fungi/physiology , Insecta/physiology , Nitrogen/chemistry , Spiders/physiology
14.
Elife ; 72018 06 19.
Article in English | MEDLINE | ID: mdl-29916366

ABSTRACT

How host and microbial factors combine to structure gut microbial communities remains incompletely understood. Redox potential is an important environmental feature affected by both host and microbial actions. We assessed how antibiotics, which can impact host and microbial function, change redox state and how this contributes to post-antibiotic succession. We showed gut redox potential increased within hours of an antibiotic dose in mice. Host and microbial functioning changed under treatment, but shifts in redox potentials could be attributed specifically to bacterial suppression in a host-free ex vivo human gut microbiota model. Redox dynamics were linked to blooms of the bacterial family Enterobacteriaceae. Ecological succession to pre-treatment composition was associated with recovery of gut redox, but also required dispersal from unaffected gut communities. As bacterial competition for electron acceptors can be a key ecological factor structuring gut communities, these results support the potential for manipulating gut microbiota through managing bacterial respiration.


Subject(s)
Anti-Bacterial Agents/pharmacology , Enterobacteriaceae/drug effects , Gastrointestinal Microbiome/drug effects , Gastrointestinal Tract/drug effects , Animals , Apolipoproteins A/genetics , Apolipoproteins A/metabolism , Enterobacteriaceae/genetics , Enterobacteriaceae/isolation & purification , Feces/microbiology , Gastrointestinal Microbiome/genetics , Gastrointestinal Tract/microbiology , Gene Expression Regulation/drug effects , Humans , Lipocalin-2/genetics , Lipocalin-2/metabolism , Male , Mice , Mice, Inbred C57BL , NF-kappa B/genetics , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Oxidation-Reduction , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism
15.
Proc Natl Acad Sci U S A ; 115(18): 4702-4706, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29666251

ABSTRACT

Secondary succession, the postdisturbance transition of herbaceous to woody-dominated ecosystems, occurs faster at lower latitudes with important ramifications for ecosystem processes. This pattern could be driven by the direct effect of temperature on tree growth; however, an alternative mechanism is tree-herb competition, which may be more intense in more fertile northern soils. We manipulated soil fertility and herbaceous species composition in identical experiments at six sites spanning the Eastern United States (30-43° N) and monitored the growth and survival of four early successional trees. Tree seedling mass 2 years after sowing was strongly associated with site differences in mean growing season temperature, regardless of species or soil treatment. The effect of temperature was twofold: seedlings grew faster in response to warmer site temperatures, but also due to the reduction of competitive interference from the herbaceous community, which was inhibited in warmer sites. Our results suggest that increasing temperatures will promote a faster transition of fields to forests in temperate ecosystems.


Subject(s)
Carbon/metabolism , Climate Change , Forests , Models, Biological , Trees/growth & development , New England
16.
Ecol Evol ; 8(2): 1196-1205, 2018 01.
Article in English | MEDLINE | ID: mdl-29375790

ABSTRACT

Soils harbor large, diverse microbial communities critical for local and global ecosystem functioning that are controlled by multiple and poorly understood processes. In particular, while there is observational evidence of relationships between both biotic and abiotic conditions and microbial composition and diversity, there have been few experimental tests to determine the relative importance of these two sets of factors at local scales. Here, we report the results of a fully factorial experiment manipulating soil conditions and plant cover on old-field mesocosms across a latitudinal gradient. The largest contributor to beta diversity was site-to-site variation, but, having corrected for that, we observed significant effects of both plant and soil treatments on microbial composition. Separate phyla were associated with each treatment type, and no interactions between soil and plant treatment were observed. Individual soil characteristics and biotic parameters were also associated with overall beta-diversity patterns and phyla abundance. In contrast, soil microbial diversity was only associated with site and not experimental treatment. Overall, plant community treatment explained more variation than soil treatment, a result not previously appreciated because it is difficult to dissociate plant community composition and soil conditions in observational studies across gradients. This work highlights the need for more nuanced, multifactorial experiments in microbial ecology and in particular indicates a greater focus on relationships between plant composition and microbial composition during community assembly.

17.
Oecologia ; 186(3): 719-729, 2018 03.
Article in English | MEDLINE | ID: mdl-29238864

ABSTRACT

Plant trait expression is shaped by filters, which can alter trait means and variances, theoretically driving species toward an "optimum" trait value for a set of environmental conditions. Recent research has highlighted the ubiquity of intraspecific variation in functional traits, which can cause plants to diverge from a hypothesized "optimum". We examined whether species occurring in "core" habitats (where they occur frequently, abundantly, and consistently) express traits that are nearer to "optimum", as captured by the community-weighted mean (CWM). We also asked whether trait variance showed signs of environmental filtering. We used cluster analysis to group plots based on environmental factors along a wet-to-dry ecotone. We used indicator species analysis to identify species with strong associations within each cluster. Trait means and variances were compared, and evidence of variance filtering was tested using a null-model approach. Trait means and trait variances respond to local-scale environmental filtering and species in core habitats were not necessarily nearer to the CWM than in other habitats. Intraspecific trait variability shows a strong signal of filtering, as variability was reduced for nearly all species and all traits compared to estimates of variability generated in the absence of environmental filtering. Our results provide strong evidence that species traits are not necessarily near "optimum" trait values in core habitats, and that trait distributions within species are strongly shaped by the environment. Future analyses should account for this divergence when calculating metrics of functional diversity, and extrapolating to ecosystem function.


Subject(s)
Ecosystem , Plants , Phenotype
18.
Ecosphere ; 9(10): 1-13, 2018 Oct.
Article in English | MEDLINE | ID: mdl-38357012

ABSTRACT

Invasive plant species can alter critical ecosystem processes including nitrogen transformations, but it is often difficult to anticipate where in an invaded landscape, these effects will occur. Our predictive ability lags because we lack a framework for understanding the multiple pathways through which environmental conditions mediate invader impacts. Here, we present a framework using structural equation modeling to evaluate the impact of an invasive grass, Microstegium vimineum (M.v.), on nitrogen cycling based on a series of invaded sites that varied in invader biomass and non-M.v. understory biomass, tree basal area, light availability, and soil conditions. Unlike previous studies, we did not find an overall pattern of elevated nitrate concentrations or higher nitrification rates in M.v.-invaded areas. We found that reference plot conditions mediated differences in mineralization between paired invaded and reference plots at each site through indirect (via M.v. biomass), direct, and interactive pathways; however, the strongest pathways were independent of M.v. biomass. For example, sites with low reference soil nitrate and high non-M.v. understory biomass tended to have faster mineralization at 5-15 cm in invaded plots. These findings suggest that more attention to reference conditions is needed to understand the impact of invasive species on soil nitrogen cycling and other ecosystem processes and that the greatest impacts will not necessarily be where the invader is most abundant.

19.
PLoS One ; 12(10): e0186292, 2017.
Article in English | MEDLINE | ID: mdl-29023560

ABSTRACT

Litter quality and soil environmental conditions are well-studied drivers influencing decomposition rates, but the role played by disturbance legacy, such as fire history, in mediating these drivers is not well understood. Fire history may impact decomposition directly, through changes in soil conditions that impact microbial function, or indirectly, through shifts in plant community composition and litter chemistry. Here, we compared early-stage decomposition rates across longleaf pine forest blocks managed with varying fire frequencies (annual burns, triennial burns, fire-suppression). Using a reciprocal transplant design, we examined how litter chemistry and soil characteristics independently and jointly influenced litter decomposition. We found that both litter chemistry and soil environmental conditions influenced decomposition rates, but only the former was affected by historical fire frequency. Litter from annually burned sites had higher nitrogen content than litter from triennially burned and fire suppression sites, but this was correlated with only a modest increase in decomposition rates. Soil environmental conditions had a larger impact on decomposition than litter chemistry. Across the landscape, decomposition differed more along soil moisture gradients than across fire management regimes. These findings suggest that fire frequency has a limited effect on litter decomposition in this ecosystem, and encourage extending current decomposition frameworks into disturbed systems. However, litter from different species lost different masses due to fire, suggesting that fire may impact decomposition through the preferential combustion of some litter types. Overall, our findings also emphasize the important role of spatial variability in soil environmental conditions, which may be tied to fire frequency across large spatial scales, in driving decomposition rates in this system.


Subject(s)
Environment , Fires , Soil , Climate , Forestry , North Carolina
20.
Ecology ; 98(12): 3022-3033, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28940315

ABSTRACT

Increases in nutrient availability and alterations to mammalian herbivore communities are a hallmark of the Anthropocene, with consequences for the primary producer communities in many ecosystems. While progress has advanced understanding of plant community responses to these perturbations, the consequences for energy flow to higher trophic levels in the form of secondary production are less well understood. We quantified arthropod biomass after manipulating soil nutrient availability and wild mammalian herbivory, using identical methods across 13 temperate grasslands. Of experimental increases in nitrogen, phosphorus, and potassium, only treatments including nitrogen resulted in significantly increased arthropod biomass. Wild mammalian herbivore removal had a marginal, negative effect on arthropod biomass, with no interaction with nutrient availability. Path analysis including all sites implicated nutrient content of the primary producers as a driver of increased arthropod mean size, which we confirmed using 10 sites for which we had foliar nutrient data. Plant biomass and physical structure mediated the increase in arthropod abundance, while the nitrogen treatments accounted for additional variation not explained by our measured plant variables. The mean size of arthropod individuals was 2.5 times more influential on the plot-level total arthropod biomass than was the number of individuals. The eutrophication of grasslands through human activity, especially nitrogen deposition, thus may contribute to higher production of arthropod consumers through increases in nutrient availability across trophic levels.


Subject(s)
Eutrophication , Grassland , Herbivory , Mammals/physiology , Animals , Arthropods , Biomass , Ecosystem , Humans , Nitrogen
SELECTION OF CITATIONS
SEARCH DETAIL
...