Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 628(8007): 342-348, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538790

ABSTRACT

Climate change could pose an urgent threat to pollinators, with critical ecological and economic consequences. However, for most insect pollinator species, we lack the long-term data and mechanistic evidence that are necessary to identify climate-driven declines and predict future trends. Here we document 16 years of abundance patterns for a hyper-diverse bee assemblage1 in a warming and drying region2, link bee declines with experimentally determined heat and desiccation tolerances, and use climate sensitivity models to project bee communities into the future. Aridity strongly predicted bee abundance for 71% of 665 bee populations (species × ecosystem combinations). Bee taxa that best tolerated heat and desiccation increased the most over time. Models forecasted declines for 46% of species and predicted more homogeneous communities dominated by drought-tolerant taxa, even while total bee abundance may remain unchanged. Such community reordering could reduce pollination services, because diverse bee assemblages typically maximize pollination for plant communities3. Larger-bodied bees also dominated under intermediate to high aridity, identifying body size as a valuable trait for understanding how climate-driven shifts in bee communities influence pollination4. We provide evidence that climate change directly threatens bee diversity, indicating that bee conservation efforts should account for the stress of aridity on bee physiology.


Subject(s)
Bees , Climate Change , Desiccation , Ecosystem , Hot Temperature , Animals , Bees/anatomy & histology , Bees/classification , Bees/physiology , Biodiversity , Body Size/physiology , Global Warming , Models, Biological , Plants , Pollination/physiology , Male , Female
2.
Insects ; 12(7)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34357262

ABSTRACT

The cotton agroecosystem is one of the most intensely managed, economically and culturally important fiber crops worldwide, including in the United States of America (U.S.), China, India, Pakistan, and Brazil. The composition and configuration of crop species and semi-natural habitat can have significant effects on ecosystem services such as pollination. Here, we investigated the local-scale effect of crop and semi-natural habitat configuration in a large field (>200 ha in size) cotton agroecosystem on the diversity and abundance of native bees. The interfaces sampled included cotton grown next to cotton, sorghum or semi-natural habitat along with a natural habitat comparator. Collections of native bees across interface types revealed 32 species in 13 genera across 3 families. Average species richness metrics ranged between 20.5 and 30.5, with the highest (30.5) at the interface of cotton and semi-natural habitat. The most abundant species was Melissodes tepaneca Cresson (>4000 individuals, ~75% of bees collected) with a higher number of individuals found in all cotton-crop interfaces compared to the cotton interface with semi-natural habitat or natural habitat alone. It was also found that interface type had a significant effect on the native bee communities. Communities of native bees in the cotton-crop interfaces tended to be more consistent in species richness and abundance. While cotton grown next to semi-natural habitat had higher species richness, the number of bees collected varied. These data suggest that native bee communities persist in large-field cotton agroecosystems. Selected species dominate (i.e., M. tepaneca) and thrive in this large-field cotton system where cotton-crop interfaces are key local landscape features. These data have implications for potential pollination benefits to cotton production. The findings also contribute to a discussion regarding the role of large-field commercial cotton growing systems in conserving native bees.

3.
Environ Entomol ; 50(4): 860-867, 2021 08 12.
Article in English | MEDLINE | ID: mdl-33960393

ABSTRACT

Noctuid pests, including tobacco budworm (Chloridea virescens (Fab.)) and bollworm (Helicoverpa zea (Boddie)), are significant pests of southern row crops including cotton (Gossypium hirsutum L.), corn (Zea mays L.), and soybean (Glycine max (L.) Moench.). This pest complex is seasonally monitored through Hartstack traps that are baited with synthetic lepidopteran pheromones across the southern United States. We examined bycatch from the noctuid traps deployed across the Mississippi Delta in 2015, 2016, and 2017 for the presence of bees. The most abundant species collected were honey bees (Apis mellifera L.), bumble bees (Bombus spp.), and long-horned bees (Melissodes spp.); these three genera accounted for 82.4% of specimens collected. We also evaluated the proportion of local- and landscape-level habitats on the abundance and richness of the bees caught as bycatch. The proportion of natural and semi-natural habitat affected the abundance and richness of bees collected at the landscape level, but not at more local scales. Additional research is needed to better understand these interactions between bycatch and landscape factors to minimize non-target collections.


Subject(s)
Hymenoptera , Moths , Animals , Bees , Ecosystem , Gossypium , Pheromones
4.
Biodivers Data J ; 8: e49285, 2020.
Article in English | MEDLINE | ID: mdl-32292276

ABSTRACT

BACKGROUND: Here we present a checklist of the bee species found on the C. Hart Merriam elevation gradient along the San Francisco Peaks in northern Arizona. Elevational gradients can serve as natural proxies for climate change, replacing time with space as they span multiple vegetation zones over a short geographic distance. Describing the distribution of bee species along this elevation gradient will help predict how bee communities might respond to changing climate. To address this, we initiated an inventory associated with ecological studies on pollinators that documented bees on the San Francisco Peaks. Sample sites spanned six life zones (vegetation zones) on the San Francisco Peaks from 2009 to 2019. We also include occurrence data from other studies, gathered by querying the Symbiota Collection of Arthropods Network (SCAN) portal covering the San Francisco Peaks region (hereafter referred to as "the Peaks"). NEW INFORMATION: Our checklist reports 359 bee species and morphospecies spanning five families and 46 genera that have been collected in the Peaks region. Prior to our concerted sampling effort there were records for 155 bee species, yet there has not been a complete list of bee species inhabiting the Peaks published to date. Over a 10-year period, we documented an additional 204 bee species inhabiting the Peaks. Our study documents range expansions to northern Arizona for 15 species. The majority of these are range expansions from either southern Arizona, southern Utah, or the Rocky Mountain region of Colorado. Nine species are new records for Arizona, four of which are the southernmost record for that species. An additional 15 species are likely undescribed.

5.
Sci Rep ; 10(1): 708, 2020 01 20.
Article in English | MEDLINE | ID: mdl-31959812

ABSTRACT

Drylands worldwide are experiencing ecosystem state transitions: the expansion of some ecosystem types at the expense of others. Bees in drylands are particularly abundant and diverse, with potential for large compositional differences and seasonal turnover across ecotones. To better understand how future ecosystem state transitions may influence bees, we compared bee assemblages and their seasonality among sites at the Sevilleta National Wildlife Refuge (NM, USA) that represent three dryland ecosystem types (and two ecotones) of the southwestern U.S. (Plains grassland, Chihuahuan Desert grassland, and Chihuahuan Desert shrubland). Using passive traps, we caught bees during two-week intervals from March-October, 2002-2014. The resulting dataset included 302 bee species and 56 genera. Bee abundance, composition, and diversity differed among ecosystems, indicating that future state transitions could alter bee assemblage composition in our system. We found strong seasonal bee species turnover, suggesting that bee phenological shifts may accompany state transitions. Common species drove the observed trends, and both specialist and generalist bee species were indicators of ecosystem types or months; these species could be sentinels of community-wide responses to future shifts. Our work suggests that predicting the consequences of global change for bee assemblages requires accounting for both within-year and among-ecosystem variation.

7.
Conserv Biol ; 27(1): 113-20, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23240651

ABSTRACT

Recently there has been considerable concern about declines in bee communities in agricultural and natural habitats. The value of pollination to agriculture, provided primarily by bees, is >$200 billion/year worldwide, and in natural ecosystems it is thought to be even greater. However, no monitoring program exists to accurately detect declines in abundance of insect pollinators; thus, it is difficult to quantify the status of bee communities or estimate the extent of declines. We used data from 11 multiyear studies of bee communities to devise a program to monitor pollinators at regional, national, or international scales. In these studies, 7 different methods for sampling bees were used and bees were sampled on 3 different continents. We estimated that a monitoring program with 200-250 sampling locations each sampled twice over 5 years would provide sufficient power to detect small (2-5%) annual declines in the number of species and in total abundance and would cost U.S.$2,000,000. To detect declines as small as 1% annually over the same period would require >300 sampling locations. Given the role of pollinators in food security and ecosystem function, we recommend establishment of integrated regional and international monitoring programs to detect changes in pollinator communities.


Subject(s)
Bees/physiology , Conservation of Natural Resources , Pollination , Animals , Environmental Monitoring , Insecta/physiology , Population Density , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...