Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Structure ; 25(3): 506-513, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28132785

ABSTRACT

Oncogenic IDH1 and IDH2 mutations contribute to cancer via production of R-2-hydroxyglutarate (2-HG). Here, we characterize two structurally distinct mutant- and isoform-selective IDH1 inhibitors that inhibit 2-HG production. Both bind to an allosteric pocket on IDH1, yet shape it differently, highlighting the plasticity of this site. Oncogenic IDH1R132H mutation destabilizes an IDH1 "regulatory segment," which otherwise restricts compound access to the allosteric pocket. Regulatory segment destabilization in wild-type IDH1 promotes inhibitor binding, suggesting that destabilization is critical for mutant selectivity. We also report crystal structures of oncogenic IDH2 mutant isoforms, highlighting the fact that the analogous segment of IDH2 is not similarly destabilized. This intrinsic stability of IDH2 may contribute to observed inhibitor IDH1 isoform selectivity. Moreover, discrete residues in the IDH1 allosteric pocket that differ from IDH2 may also guide IDH1 isoform selectivity. These data provide a deeper understanding of how IDH1 inhibitors achieve mutant and isoform selectivity.


Subject(s)
Enzyme Inhibitors/pharmacology , Isocitrate Dehydrogenase/chemistry , Isocitrate Dehydrogenase/genetics , Neoplasms/genetics , Small Molecule Libraries/pharmacology , Allosteric Regulation , Allosteric Site , Crystallography, X-Ray , Glutarates/metabolism , Humans , Isocitrate Dehydrogenase/antagonists & inhibitors , Protein Binding , Protein Conformation , Protein Isoforms/chemistry , Protein Isoforms/genetics
2.
J Med Chem ; 59(10): 4711-23, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27187609

ABSTRACT

MELK kinase has been implicated in playing an important role in tumorigenesis. Our previous studies suggested that MELK is involved in the regulation of cell cycle and its genetic depletion leads to growth inhibition in a subset of high MELK-expressing basal-like breast cancer cell lines. Herein we describe the discovery and optimization of novel MELK inhibitors 8a and 8b that recapitulate the cellular effects observed by short hairpin ribonucleic acid (shRNA)-mediated MELK knockdown in cellular models. We also discovered a novel fluorine-induced hydrophobic collapse that locked the ligand in its bioactive conformation and led to a 20-fold gain in potency. These novel pharmacological inhibitors achieved high exposure in vivo and were well tolerated, which may allow further in vivo evaluation.


Subject(s)
Drug Discovery , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/standards , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Humans , MCF-7 Cells , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Structure-Activity Relationship
3.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 1): 58-66, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19153467

ABSTRACT

The inhibitor of apoptosis protein (IAP) family of molecules inhibit apoptosis through the suppression of caspase activity. It is known that the XIAP protein regulates both caspase-3 and caspase-9 through direct protein-protein interactions. Specifically, the BIR3 domain of XIAP binds to caspase-9 via a ;hotspot' interaction in which the N-terminal residues of caspase-9 bind in a shallow groove on the surface of XIAP. This interaction is regulated via SMAC, the N-terminus of which binds in the same groove, thus displacing caspase-9. The mechanism of suppression of apoptosis by cIAP1 is less clear. The structure of the BIR3 domain of cIAP1 (cIAP1-BIR3) in complex with N-terminal peptides from both SMAC and caspase-9 has been determined. The binding constants of these peptides to cIAP1-BIR3 have also been determined using the surface plasmon resonance technique. The structures show that the peptides interact with cIAP1 in the same way that they interact with XIAP: both peptides bind in a similar shallow groove in the BIR3 surface, anchored at the N-terminus by a charge-stabilized hydrogen bond. The binding data show that the SMAC and caspase-9 peptides bind with comparable affinities (85 and 48 nM, respectively).


Subject(s)
Caspase 9/chemistry , Multiprotein Complexes/chemistry , Oligopeptides/chemistry , X-Linked Inhibitor of Apoptosis Protein/chemistry , Animals , Apoptosis , Binding Sites , Caspase 9/metabolism , Crystallization , Crystallography, X-Ray , Humans , Hydrogen Bonding , Multiprotein Complexes/metabolism , Oligopeptides/metabolism , Protein Binding , Protein Structure, Tertiary , Structural Homology, Protein , Surface Plasmon Resonance , X-Linked Inhibitor of Apoptosis Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...