Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38850246

ABSTRACT

Analogies are used to make abstract topics meaningful and more easily comprehensible to learners. Incorporating simple analogies into STEM classrooms is a fairly common practice, but the analogies are typically generated and explained by the instructor for the learners. We hypothesize that challenging learners to create complex, extended analogies themselves can promote integration of content knowledge and development of critical thinking skills, which are essential for deep learning, but are challenging to teach. In this qualitative study, college biology students (n = 30) were asked to construct a complex analogy about the flow of genetic information using a familiar item. One week later, participants constructed a second analogy about the same topic, but this time using a more challenging item. Twenty participants worked on the challenging analogy in pairs, while the other 10 worked alone. Analysis of the 50 interviews resulted in a novel-scoring scheme, which measured both content knowledge (understanding of biology terms) and critical thinking (alignment of relationships between elements of the analogy). Most participants improved slightly due to practice, but they improved dramatically when working with a partner. The biggest gains were seen in critical thinking, not content knowledge. Having students construct complex, sophisticated analogies in pairs is a high-impact practice that can help students develop their critical thinking skills, which are crucial in academic and professional settings. The discussion between partners likely requires students to justify their explanations and critique their partner's explanations, which are characteristics of critical thinking.

2.
J Microbiol Biol Educ ; 24(1)2023 Apr.
Article in English | MEDLINE | ID: mdl-37089244

ABSTRACT

Visual literacy, which is the ability to effectively identify, interpret, evaluate, use, and create images and visual media, is an important aspect of science literacy. As molecular processes are not directly observable, researchers and educators rely on visual representations (e.g., drawings) to communicate ideas in biology. How learners interpret and organize those numerous diagrams is related to their underlying knowledge about biology and their skills in visual literacy. Furthermore, it is not always obvious how and why learners interpret diagrams in the way they do (especially if their interpretations are unexpected), as it is not possible to "see" inside the minds of learners and directly observe the inner workings of their brains. Hence, tools that allow for the investigation of visual literacy are needed. Here, we present a novel card-sorting task based on visual literacy skills to investigate how learners interpret and think about DNA-based concepts. We quantified differences in performance between groups of varying expertise and in pre- and postcourse settings using percentages of expected card pairings and edit distance to a perfect sort. Overall, we found that biology experts organized the visual representations based on deep conceptual features, while biology learners (novices) more often organized based on surface features, such as color and style. We also found that students performed better on the task after a course in which molecular biology concepts were taught, suggesting the activity is a useful and valid tool for measuring knowledge. We have provided the cards to the community for use as a classroom activity, as an assessment instrument, and/or as a useful research tool to probe student ideas about molecular biology.

3.
CBE Life Sci Educ ; 21(3): ar47, 2022 09.
Article in English | MEDLINE | ID: mdl-35816448

ABSTRACT

Learning molecular biology involves using visual representations to communicate ideas about largely unobservable biological processes and molecules. Genes and gene expression cannot be directly visualized, but students are expected to learn and understand these and related concepts. Theoretically, textbook illustrations should help learners master such concepts, but how are genes and other DNA-linked concepts illustrated for learners? We examined all DNA-related images found in 12 undergraduate biology textbooks to better understand what biology students encounter when learning concepts related to DNA. Our analysis revealed a wide array of DNA images that were used to design a new visual framework, the DNA Landscape, which we applied to more than 2000 images from common introductory and advanced biology textbooks. All DNA illustrations could be placed on the landscape framework, but certain positions were more common than others. We mapped figures about "gene expression" and "meiosis" onto the landscape framework to explore how these challenging topics are illustrated for learners, aligning these outcomes with the research literature to showcase how the overuse of certain representations may hinder, instead of help, learning. The DNA Landscape is a tool to promote research on visual literacy and to guide new learning activities for molecular biology.


Subject(s)
Learning , Students , DNA/genetics , Humans , Literacy
4.
CBE Life Sci Educ ; 20(4): ar53, 2021 12.
Article in English | MEDLINE | ID: mdl-34546102

ABSTRACT

Concepts of molecular biology and genetics are difficult for many biology undergraduate students to master yet are crucial for deep understanding of how life works. By asking students to draw their ideas, we attempted to uncover the mental models about genes and gene expression held by biology students (n = 23) and experts (n = 18) using semistructured interviews. A large divide was identified between novice and expert conceptions. While experts typically drew box-and-line representations and thought about genes as regions of DNA that were used to encode products, students typically drew whole chromosomes rather than focusing on gene structure and conflated gene expression with simple phenotypic outcomes. Experts universally described gene expression as a set of molecular processes involving transcription and translation, whereas students often associated gene expression with Punnett squares and phenotypic outcomes. Follow-up survey data containing a ranking question confirmed students' alignment of their mental models with the images uncovered during interviews (n = 156 undergraduate biology students) and indicated that Advanced students demonstrate a shift toward expert-like thinking. An analysis of 14 commonly used biology textbooks did not show any relationship between Punnett squares and discussions of gene expression, so it is doubtful students' ideas originate directly from textbook reading assignments. Our findings add to the literature about mechanistic reasoning abilities of learners and provide new insights into how biology students think about genes and gene expression.


Subject(s)
Molecular Biology , Students , Biology , DNA , Gene Expression , Humans , Problem Solving
5.
Article in English | MEDLINE | ID: mdl-32913487

ABSTRACT

Topics related to energy transformation and metabolism are important parts of an undergraduate biology curriculum, but these are also topics that students traditionally struggle with. To address this, we have created a short online Interactive Video Vignette (IVV) called To Ferment or Not to Ferment: That is the Question. This IVV is designed to help students learn important ideas related to cellular respiration and metabolism. Students in various courses across four institutions were assigned the IVV as an out-of-class preinstruction homework assignment. To test the effectiveness of this IVV on student learning, we collected and analyzed data from questions embedded in the IVV, open response reflection questions, and pre- and postassessments from IVV watchers and nonwatchers. Our analysis revealed that students who completed the IVV activity interacted productively with this online tool and made significant learning gains on important topics related to cellular respiration and metabolism. This IVV is freely available via https://www.rit.edu/cos/interactive/MINT for instructors to adopt for class use.

6.
Biochem Mol Biol Educ ; 46(5): 435-444, 2018 09.
Article in English | MEDLINE | ID: mdl-30281894

ABSTRACT

The essence of molecular biology education lies in understanding of gene expression, with subtopics including the central dogma processes, such as transcription and translation. While these concepts are core to the discipline, they are also notoriously difficult for students to learn, probably because they cannot be directly observed. While nearly all active learning strategies have been shown to improve learning compared with passive lectures, little has been done to compare different types of active learning. We hypothesized that physical models of central dogma processes would be especially helpful for learning, because they provide a resource that students can see, touch, and manipulate while trying to build their knowledge. For students enrolled in an entirely active-learning-based Cell & Molecular Biology course, we examined whether model-based activities were more effective than non-model based activities. To test their understanding at the beginning and end of the semester, we employed the multiple-select Central Dogma Concept Inventory (CDCI). Each student acted as their own control, as all students engaged in all lessons yet some questions related to model-based activities and some related to clicker questions, group problem-solving, and other non-model-based activities. While all students demonstrated learning gains on both types of question, they showed much higher learning gains on model-based questions. Examining their selected answers in detail showed that while higher performing students were prompted to refine their already-good mental models to be even better, lower performing students were able to construct new knowledge that was much more consistent with an expert's understanding. © 2018 The Authors. Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology., 46(5):435-444, 2018.


Subject(s)
Learning , Models, Biological , Molecular Biology/education , Students
7.
CBE Life Sci Educ ; 16(3)2017.
Article in English | MEDLINE | ID: mdl-28798212

ABSTRACT

Although instruction on meiosis is repeated many times during the undergraduate curriculum, many students show poor comprehension even as upper-level biology majors. We propose that the difficulty lies in the complexity of understanding DNA, which we explain through a new model, the DNA triangle The DNA triangle integrates three distinct scales at which one can think about DNA: chromosomal, molecular, and informational Through analysis of interview and survey data from biology faculty and students through the lens of the DNA triangle, we illustrate important differences in how novices and experts are able to explain the concepts of ploidy, homology, and mechanism of homologous pairing Similarly, analysis of passages from 16 different biology textbooks shows a large divide between introductory and advanced material, with introductory books omitting explanations of meiosis-linked concepts at the molecular level of DNA. Finally, backed by textbook findings and feedback from biology experts, we show that the DNA triangle can be applied to teaching and learning meiosis. By applying the DNA triangle to topics on meiosis we present a new framework for educators and researchers that ties concepts of ploidy, homology, and mechanism of homologous pairing to knowledge about DNA on the chromosomal, molecular, and informational levels.


Subject(s)
Biology/education , Curriculum , Learning , Meiosis , Students , DNA , Humans
8.
CBE Life Sci Educ ; 17(1)2017 12 01.
Article in English | MEDLINE | ID: mdl-29351909

ABSTRACT

In this article, we begin to unpack the phenomenon of representational competence by exploring how arrow symbols are used in introductory biology textbook figures. Out of 1214 figures in an introductory biology textbook, 632 (52%) of them contained arrows that were used to represent many different concepts or processes. Analysis of these figures revealed little correlation between arrow style and meaning. A more focused study of 86 figures containing 230 arrows from a second textbook showed the same pattern of inconsistency. Interviews with undergraduates confirmed that arrows in selected textbook figures were confusing and did not readily convey the information intended by the authors. We also present findings from an online survey in which subjects were asked to infer meaning of different styles of arrows in the absence of context. Few arrow styles had intrinsic meaning to participants, and illustrators did not always use those arrows for the meanings expected by students. Thus, certain styles of arrows triggered confusion and/or incorrect conceptual ideas. We argue that 1) illustrators need to be more clear and consistent when using arrow symbols, 2) instructors need to be cognizant of the level of clarity of representations used during instruction, and 3) instructors should help students learn how to interpret representations containing arrows.


Subject(s)
Biology/education , Humans , Learning , Students , Textbooks as Topic
9.
CBE Life Sci Educ ; 15(2)2016.
Article in English | MEDLINE | ID: mdl-27055775

ABSTRACT

Scientific teaching requires scientifically constructed, field-tested instruments to accurately evaluate student thinking and gauge teacher effectiveness. We have developed a 23-question, multiple select-format assessment of student understanding of the essential concepts of the central dogma of molecular biology that is appropriate for all levels of undergraduate biology. Questions for the Central Dogma Concept Inventory (CDCI) tool were developed and iteratively revised based on student language and review by experts. The ability of the CDCI to discriminate between levels of understanding of the central dogma is supported by field testing (N= 54), and large-scale beta testing (N= 1733). Performance on the assessment increased with experience in biology; scores covered a broad range and showed no ceiling effect, even with senior biology majors, and pre/posttesting of a single class focused on the central dogma showed significant improvement. The multiple-select format reduces the chances of correct answers by random guessing, allows students at different levels to exhibit the extent of their knowledge, and provides deeper insight into the complexity of student thinking on each theme. To date, the CDCI is the first tool dedicated to measuring student thinking about the central dogma of molecular biology, and version 5 is ready to use.


Subject(s)
Educational Measurement/methods , Molecular Biology/education , Humans , Pilot Projects , Students
10.
CBE Life Sci Educ ; 13(2): 338-48, 2014.
Article in English | MEDLINE | ID: mdl-26086664

ABSTRACT

The central dogma of molecular biology, a model that has remained intact for decades, describes the transfer of genetic information from DNA to protein though an RNA intermediate. While recent work has illustrated many exceptions to the central dogma, it is still a common model used to describe and study the relationship between genes and protein products. We investigated understanding of central dogma concepts and found that students are not primed to think about information when presented with the canonical figure of the central dogma. We also uncovered conceptual errors in student interpretation of the meaning of the transcription arrow in the central dogma representation; 36% of students (n = 128; all undergraduate levels) described transcription as a chemical conversion of DNA into RNA or suggested that RNA existed before the process of transcription began. Interviews confirm that students with weak conceptual understanding of information flow find inappropriate meaning in the canonical representation of central dogma. Therefore, we suggest that use of this representation during instruction can be counterproductive unless educators are explicit about the underlying meaning.


Subject(s)
DNA/genetics , Models, Genetic , RNA/genetics , Students/psychology , Thinking , Educational Measurement , Humans , Transcription, Genetic
11.
CBE Life Sci Educ ; 11(4): 425-36, 2012.
Article in English | MEDLINE | ID: mdl-23222838

ABSTRACT

Cellular processes that rely on knowledge of molecular behavior are difficult for students to comprehend. For example, thorough understanding of meiosis requires students to integrate several complex concepts related to chromosome structure and function. Using a grounded theory approach, we have unified classroom observations, assessment data, and in-depth interviews under the theory of knowledge transfer to explain student difficulties with concepts related to chromosomal behavior. In this paper, we show that students typically understand basic chromosome structure but do not activate cognitive resources that would allow them to explain macromolecular phenomena (e.g., homologous pairing during meiosis). To improve understanding of topics related to genetic information flow, we suggest that instructors use pedagogies and activities that prime students for making connections between chromosome structure and cellular processes.


Subject(s)
Cell Division , Chromosomes/chemistry , Knowledge , Students , Alleles , Biology/education , DNA/chemistry , Educational Measurement , Homologous Recombination , Humans , Meiosis , Models, Biological
12.
Biosci Rep ; 32(4): 375-82, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22494057

ABSTRACT

Human leukaemic HL-60 cells are widely used for studying interactions involving adhesion molecules [e.g. P-selectin and PSGL-1 (P-selectin glycoprotein ligand-1)] since their rolling behaviour has been shown to mimic the dynamics of leucocyte rolling in vitro. HL-60 cells are neutrophilic promyelocytes that can undergo granulocytic differentiation upon exposure to compounds such as DMSO (dimethylsulfoxide). Using a parallel plate flow chamber functionalized with recombinant P-selectin-Fc chimaera, undifferentiated and DMSO-induced (48, 72 and 96 h) HL-60 cells were assayed for rolling behaviour. We found that depending on P-selectin incubation concentration, undifferentiated cells incurred up to a 6-fold increase in rolling velocity while subjected to an approximately 10-fold increase in biologically relevant shear stress. HL-60 cells exposed to DMSO for up to 72 h incurred up to a 3-fold increase in rolling velocity over the same shear stress range. Significantly, cells exposed for up to 96 h incurred up to a 9-fold decrease in rolling velocity, compared with undifferentiated HL-60 cells. Although cell surface and nuclear morphological changes were evident upon exposure to DMSO, flow cytometric analysis revealed that PSGL-1 expression was unchanged, irrespective of treatment duration. The results suggest that DMSO-treated HL-60 cells may be problematic as a substitute for neutrophils for trafficking studies during advanced stages of the LAC (leucocyte adhesion cascade). We suggest that remodelling of the cell surface during differentiation may affect rolling behaviour and that DMSO-treated HL-60 cells would behave differently from the normal leucocytes during inflammatory response in vivo.


Subject(s)
Dimethyl Sulfoxide/pharmacology , Leukocyte Rolling/drug effects , Cell Adhesion , Cell Nucleus/drug effects , Cell Shape/drug effects , Cytoplasm/drug effects , HL-60 Cells , Humans , Immobilized Proteins/metabolism , Immunoglobulin Fc Fragments/metabolism , Membrane Glycoproteins/metabolism , P-Selectin/metabolism , Recombinant Fusion Proteins/metabolism
13.
Biochem Mol Biol Educ ; 39(5): 344-51, 2011.
Article in English | MEDLINE | ID: mdl-21948506

ABSTRACT

Chromosome structure is confusing to students at all levels, and chromosome behavior during meiosis is a notoriously difficult topic. Undergraduate biology majors are exposed to the process of meiosis numerous times during their presecondary and postsecondary education, yet understanding of key concepts, such as the point at which haploidy is established, does not improve substantially with repeated exposure. Based on student's drawings, 96% of intermediate-level biology majors have unclear or incorrect ideas about meiosis. Students have difficulty diagramming the process of meiosis starting with three unreplicated pairs of chromosomes, and even when they can produce an accurate diagram, they are unclear how to assign the terms "haploid" and "diploid." We designed an interactive lesson based on constructivist theory to address these issues in a large lecture class. Pretest and posttest scores showed a significant improvement in students' understanding of ploidy compared to a parallel class taught in the traditional way (e.g. using the textbook diagrams). In interviews afterward, those students whose scores improved on exams specifically pointed to the features of the in-class modeling that were deliberately incorporated for that purpose.


Subject(s)
Cell Biology/education , Meiosis , Molecular Biology/education , Ploidies , Problem-Based Learning/methods , Anaphase , Centrosome/physiology , Chromosomes/physiology , Comprehension , Crossing Over, Genetic , DNA Replication , Education, Medical, Undergraduate , Female , Humans , Interviews as Topic , Knowledge , Male , Metaphase , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...