Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatr Res ; 78(6): 634-40, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26322414

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH) worsens clinical outcomes in former preterm infants with bronchopulmonary dysplasia (BPD). Oxidant stress disrupts alveolar and vascular development in models of BPD. Bleomycin causes oxidative stress and induces BPD and PAH in neonatal rats. Disruption in the vascular endothelial growth factor (VEGF) and nitric oxide signaling pathways contributes to BPD. We hypothesized that loss of EC-SOD would worsen PAH associated with BPD in a neonatal mouse model of bleomycin-induced BPD by disrupting the VEGF/NO signaling pathway. METHODS: Neonatal wild-type mice (WT), and mice lacking EC-SOD (EC-SOD KO) received intraperitoneal bleomycin (2 units/kg) or phosphate-buffered saline (PBS) three times weekly and were evaluated at weeks 3 or 4. RESULTS: Lack of EC-SOD impaired alveolar development and resulted in PH (elevated right ventricular systolic pressures, right ventricular hypertrophy (RVH)), decreased vessel density, and increased small vessel muscularization. Exposure to bleomycin further impaired alveolar development, worsened RVH and vascular remodeling. Lack of EC-SOD and bleomycin treatment decreased lung total and phosphorylated VEGFR2 and eNOS protein expression. CONCLUSION: EC-SOD is critical in preserving normal lung development and loss of EC-SOD results in disrupted alveolar development, PAH and vascular remodeling at baseline, which is further worsened with bleomycin and associated with decreased activation of VEGFR2.


Subject(s)
Bleomycin , Bronchopulmonary Dysplasia/enzymology , Endothelial Cells/enzymology , Hypertension, Pulmonary/enzymology , Pulmonary Alveoli/blood supply , Pulmonary Alveoli/enzymology , Pulmonary Artery/enzymology , Superoxide Dismutase/deficiency , Vascular Remodeling , Animals , Animals, Newborn , Bronchopulmonary Dysplasia/chemically induced , Bronchopulmonary Dysplasia/genetics , Bronchopulmonary Dysplasia/pathology , Bronchopulmonary Dysplasia/physiopathology , Endothelial Cells/pathology , Genetic Predisposition to Disease , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/physiopathology , Hypertrophy, Right Ventricular/chemically induced , Hypertrophy, Right Ventricular/enzymology , Hypertrophy, Right Ventricular/genetics , Hypertrophy, Right Ventricular/physiopathology , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress , Phenotype , Phosphorylation , Pulmonary Alveoli/pathology , Pulmonary Artery/pathology , Pulmonary Artery/physiopathology , Signal Transduction , Superoxide Dismutase/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Ventricular Dysfunction, Right/chemically induced , Ventricular Dysfunction, Right/enzymology , Ventricular Dysfunction, Right/genetics , Ventricular Dysfunction, Right/physiopathology , Ventricular Function, Right , Ventricular Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...