Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Genome Biol ; 25(1): 139, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802856

ABSTRACT

Weeds are attractive models for basic and applied research due to their impacts on agricultural systems and capacity to swiftly adapt in response to anthropogenic selection pressures. Currently, a lack of genomic information precludes research to elucidate the genetic basis of rapid adaptation for important traits like herbicide resistance and stress tolerance and the effect of evolutionary mechanisms on wild populations. The International Weed Genomics Consortium is a collaborative group of scientists focused on developing genomic resources to impact research into sustainable, effective weed control methods and to provide insights about stress tolerance and adaptation to assist crop breeding.


Subject(s)
Genomics , Plant Weeds , Plant Weeds/genetics , Genomics/methods , Weed Control/methods , Genome, Plant , Crops, Agricultural/genetics , Herbicide Resistance/genetics , Plant Breeding/methods
2.
J Immunol ; 211(9): 1397-1405, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37721419

ABSTRACT

High levels of IFN-γ are produced in the lung during an adaptive immune response to Pneumocystis, but the effects of this prototypical Th1 cytokine on fungal clearance and immunopathogenesis have not been fully defined. Therefore, Pneumocystis-infected immunodeficient mice were immune reconstituted and administered control or anti-IFN-γ neutralizing Ab to determine how IFN-γ regulates the balance between host defense and immune-mediated lung injury. Mice treated with anti-IFN-γ demonstrated an initial worsening of Pneumocystis pneumonia-related immunopathogenesis, with greater weight loss, heightened lung inflammation, and more severe pulmonary function deficits than control mice. However, IFN-γ neutralization also enhanced macrophage phagocytosis of Pneumocystis and accelerated fungal clearance. When anti-IFN-γ-treated mice were also given IL-4 and IL-13 to promote a Th2-biased lung environment, the accelerated fungal clearance was preserved, but the severity of immunopathogenesis was reduced, and a more rapid recovery was observed. A direct suppressive effect of IFN-γ on macrophages was required but was not solely responsible for delayed fungal clearance, suggesting that IFN-γ acts through multiple mechanisms that likely include modulation of both macrophage and Th polarization. Enhanced Pneumocystis clearance in anti-IFN-γ-treated and IFN-γR-deficient mice was associated with significantly elevated IL-17+ CD4+ T cells and IL-17 protein in the lungs. Furthermore, neutralization of IL-17, but not IL-4, signaling blocked the accelerated fungal clearance observed in anti-IFN-γ-treated mice. Together, these data demonstrate that although IFN-γ delays fungal clearance by suppressing the lung Th17 response, it also serves an important regulatory role that limits immunopathogenesis and preserves pulmonary function.


Subject(s)
Pneumocystis , Pneumonia, Pneumocystis , Animals , Mice , Pneumonia, Pneumocystis/microbiology , Pneumonia, Pneumocystis/pathology , Interleukin-17 , Lung , Interferon-gamma , Mice, Inbred C57BL , Mice, Knockout
3.
Infect Immun ; 91(4): e0049022, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36916933

ABSTRACT

Pneumocystis is a respiratory fungal pathogen that is among the most frequent causes of life-threatening pneumonia (PcP) in immunocompromised hosts. Alveolar macrophages play an important role in host defense against Pneumocystis, and several studies have suggested that M2 polarized macrophages have anti-Pneumocystis effector activity. Our prior work found that the immunomodulatory drug sulfasalazine (SSZ) provides a dual benefit during PcP-related immune reconstitution inflammatory syndrome (IRIS) by concurrently suppressing immunopathogenesis while also accelerating macrophage-mediated fungal clearance. The benefits of SSZ were associated with heightened Th2 cytokine production and M2 macrophage polarization. Therefore, to determine whether SSZ improves the outcome of PcP through a mechanism that requires Th2-dependent M2 polarization, RAG2-/- mice lacking interleukin 4 receptor alpha chain (IL-4Rα) on macrophage lineage cells were generated. As expected, SSZ treatment dramatically reduced the severity of PcP-related immunopathogenesis and accelerated fungal clearance in immune-reconstituted RAG2-/- mice. Similarly, SSZ treatment was also highly effective in immune-reconstituted RAG2/IL-4Rα-/- and RAG2/gamma interferon receptor (IFN-γR)-/- mice, demonstrating that neither IL-4Rα-dependent M2 nor IFN-γR-dependent M1 macrophage polarization programs were required for the beneficial effects of SSZ. Despite the fact that macrophages from RAG2/IL-4Rα-/- mice could not respond to the Th2 cytokines IL-4 and IL-13, M2-biased alveolar macrophages were identified in the lungs following SSZ treatment. These data demonstrate that not only does SSZ enhance phagocytosis and fungal clearance in the absence of macrophage IL-4Rα signaling, but also that SSZ promotes M2 macrophage polarization in an IL-4Rα-independent manner. These findings could have implications for the treatment of PcP and other diseases in which M2 polarization is beneficial.


Subject(s)
Pneumocystis , Pneumonia, Pneumocystis , Mice , Animals , Sulfasalazine/pharmacology , Pneumonia, Pneumocystis/drug therapy , Antifungal Agents/pharmacology , Macrophages , Macrophages, Alveolar/microbiology
4.
Res Sq ; 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38168335

ABSTRACT

Understanding vascular inflammation and myofibroblast crosstalk is critical to developing therapies for fibrotic diseases. Here we report the development of a novel human Tendon-on-a-Chip (hToC) to model this crosstalk in peritendinous adhesions, a debilitating fibrotic condition affecting flexor tendon, which currently lacks biological therapies. The hToC enables cellular and paracrine interactions between a vascular compartment harboring endothelial cells and monocytes with a tissue hydrogel compartment containing tendon fibroblasts and macrophages. We find that the hToC replicates in vivo inflammatory and fibrotic phenotypes in preclinical and clinical samples, including myofibroblast differentiation and tissue contraction, excessive ECM deposition, and inflammatory cytokines secretion. We further show that the fibrotic phenotypes are driven by the transmigration of monocytes from the vascular to the tissue compartments of the chip. We demonstrate significant overlap in fibrotic transcriptional signatures in the hToC with human tenolysis samples, including mTOR signaling, a regulatory nexus of fibrosis across various organs. Treatment with rapamycin suppressed the fibrotic phenotype on the hToC, which validates the hToC as a preclinical alternative for investigating fibrosis and testing therapeutics.

5.
Pediatr Pulmonol ; 57 Suppl 1: S13-S16, 2022 02.
Article in English | MEDLINE | ID: mdl-34647698

ABSTRACT

In this commentary, we discuss health disparities, reflecting on our experience in delayed diagnosis of cystic fibrosis based on race and bias in healthcare practitioners.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Cystic Fibrosis/diagnosis , Cystic Fibrosis/epidemiology , Humans
6.
JPhys Photonics ; 3(4): 045004, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34693207

ABSTRACT

This paper presents the use of a deformable mirror (DM) configured to rapidly refocus a microscope employing a high numerical aperture (NA) objective lens. An Alpao DM97-15 membrane DM was used to refocus a 40×/0.80 NA water-immersion objective through a defocus range of -50-50 µm at 26.3 sweeps s-1. We achieved imaging with a mean Strehl metric of >0.6 over a field of view in the sample of 200 × 200 µm2 over a defocus range of 77 µm. We describe an optimisation procedure where the mirror is swept continuously in order to avoid known problems of hysteresis associated with the membrane DM employed. This work demonstrates that a DM-based refocusing system could in the future be used in light-sheet fluorescence microscopes to achieve video-rate volumetric imaging.

7.
J Agric Food Chem ; 69(17): 5096-5104, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33826316

ABSTRACT

Natural and modified versions of the 5-enolpyruvylshikimate-3-phosphate synthase (epsps) gene have been used to confer tolerance to the broad-spectrum herbicide glyphosate in a variety of commercial crops. The most widely utilized trait was obtained from the Agrobacterium tumefaciens strain CP4 and has been commercialized in several glyphosate-tolerant crops. The EPSPS gene products are enzymes that have been divided into three classes based on sequence similarity, sensitivity to glyphosate, and steady-state catalytic parameters. Herein, we describe the informatics-guided identification and biochemical and structural characterization of a novel EPSPS from Streptomyces sviceus (DGT-28 EPSPS). The data suggest DGT-28 EPSPS and other closely related homologues exemplify a distinct new class (Class IV) of EPSPS enzymes that display intrinsic tolerance to high concentrations of glyphosate (Ki ≥ 5000 µM). We further demonstrate that dgt-28 epsps, when transformed into stable plants, provides robust (≥4× field rates) vegetative/reproductive herbicide tolerance and has utility in weed-control systems comparable to that of commercialized events.


Subject(s)
Herbicides , Streptomyces , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , Glycine/analogs & derivatives , Glycine/pharmacology , Herbicide Resistance/genetics , Herbicides/pharmacology , Streptomyces/genetics , Glyphosate
8.
Pest Manag Sci ; 77(4): 1572-1577, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33284501

ABSTRACT

Chemical weed control has been widely adopted and has led to increased efficiency and reduced crop production costs. With the increased use of herbicides and the introduction of herbicide-tolerant crops we have also seen an increase in herbicide resistant weeds which presents a challenge for farmers and land managers. It is incumbent upon the agriculture industry to be an indispensable partner in leading policy, research, education, and best management practices related to herbicide resistance. Corteva Agriscience is an active, engaged partner in herbicide resistance research, education, and communication globally to enable the long-term sustainable use of herbicide-tolerant crop traits and herbicides. Some of the key components of our commitment are highlighted in this Perspective paper and include memberships, partnerships, close involvement with CropLife International (and regional CropLife organizations), and Herbicide Resistance Action Committees at the Global, regional and country level, technical leadership and engagement in multiple scientific societies, and collaboration with universities and research institutes. Corteva is committed to advancing sustainable agriculture to enrich lives and our planet for generations to come and this drives our action through the entire product lifecycle and with our customers and consumers.


Subject(s)
Herbicide Resistance , Herbicides , Crops, Agricultural/genetics , Herbicide Resistance/genetics , Herbicides/pharmacology , Plant Weeds/genetics , Weed Control
9.
Front Plant Sci ; 11: 570778, 2020.
Article in English | MEDLINE | ID: mdl-33178242

ABSTRACT

The selection of transcription terminators (TTs) for pairing with high expressing constitutive promoters in chimeric constructs is crucial to deliver optimal transgene expression in plants. In this study, the use of the native combinations of four polyubiquitin gene promoters and corresponding TTs resulted in up to >3-fold increase in transgene expression in maize. Of the eight polyubiquitin promoter and TT regulatory elements utilized, seven were novel and identified from the polyubiquitin genes of Brachypodium distachyon, Setaria italica, and Zea mays. Furthermore, gene expression driven by the Cassava mosaic virus promoter was studied by pairing the promoter with distinct TTs derived from the high expressing genes of Arabidopsis. Of the three TTs studied, the polyubiquitin10 gene TT produced the highest transgene expression in maize. Polyadenylation patterns and mRNA abundance from eight distinct TTs were analyzed using 3'-RACE and next-generation sequencing. The results exhibited one to three unique polyadenylation sites in the TTs. The poly(A) site patterns for the StPinII TT were consistent when the same TT was deployed in chimeric constructs irrespective of the reporter gene and promoter used. Distal to the poly(A) sites, putative polyadenylation signals were identified in the near-upstream regions of the TTs based on previously reported mutagenesis and bioinformatics studies in rice and Arabidopsis. The putative polyadenylation signals were 9 to 11 nucleotides in length. Six of the eight TTs contained the putative polyadenylation signals that were overlaps of either canonical AAUAAA or AAUAAA-like polyadenylation signals and AUGAAU, a top-ranking-hexamer of rice and Arabidopsis gene near-upstream regions. Three of the polyubiquitin gene TTs contained the identical 9-nucleotide overlap, AUGAAUAAG, underscoring the functional significance of such overlaps in mRNA 3' end processing. In addition to identifying new combinations of regulatory elements for high constitutive trait gene expression in maize, this study demonstrated the importance of TTs for optimizing gene expression in plants. Learning from this study could be applied to other dicotyledonous and monocotyledonous plant species for transgene expression. Research on TTs is not limited to transgene expression but could be extended to the introduction of appropriate mutations into TTs via genome editing, paving the way for expression modulation of endogenous genes.

10.
Infect Immun ; 88(2)2020 01 22.
Article in English | MEDLINE | ID: mdl-31611280

ABSTRACT

The pulmonary immune response protects healthy individuals against Pneumocystis pneumonia (PcP). However, the immune response also drives immunopathogenesis in patients who develop severe PcP, and it is generally accepted that optimal treatment requires combination strategies that promote fungal killing and also provide effective immunomodulation. The anti-inflammatory drug sulfasalazine programs macrophages for enhanced Pneumocystis phagocytosis and also suppresses PcP-related immunopathogenesis. Anti-Pneumocystis antibody opsonizes Pneumocystis organisms for greater phagocytosis and may also mask antigens that drive immunopathogenesis. Thus, we hypothesized that combining antibody and sulfasalazine would have the dual benefit of enhancing fungal clearance while dampening immunopathogenesis and allow the rescue of severe PcP. To model a clinically relevant treatment scenario in mice, therapeutic interventions were withheld until clear symptoms of pneumonia were evident. When administered individually, both passive antibody and sulfasalazine improved pulmonary function and enhanced Pneumocystis clearance to similar degrees. However, combination treatment with antibody and sulfasalazine produced a more rapid improvement, with recovery of body weight, a dramatic improvement in pulmonary function, reduced lung inflammation, and the rapid clearance of the Pneumocystis organisms. Accelerated fungal clearance in the combination treatment group was associated with a significant increase in macrophage phagocytosis of Pneumocystis Both passive antibody and sulfasalazine resulted in the suppression of Th1 cytokines and a marked increase in lung macrophages displaying an alternatively activated phenotype, which were enhanced by combination treatment. Our data support the concept that passive antibody and sulfasalazine could be an effective and specific adjunctive therapy for PcP, with the potential to accelerate fungal clearance while attenuating PcP-associated immunopathogenesis.


Subject(s)
Antibodies/immunology , Fungi/drug effects , Fungi/immunology , Pneumonia, Pneumocystis/drug therapy , Pneumonia, Pneumocystis/immunology , Sulfasalazine/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Cytokines/immunology , Female , Immunologic Factors/immunology , Immunomodulation/drug effects , Immunomodulation/immunology , Immunotherapy/methods , Inflammation/immunology , Lung/drug effects , Lung/immunology , Macrophage Activation/drug effects , Macrophage Activation/immunology , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/immunology , Mice , Mice, SCID , Phagocytosis/drug effects , Phagocytosis/immunology
11.
Am J Physiol Lung Cell Mol Physiol ; 317(5): L591-L601, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31509427

ABSTRACT

Ataxia-telangiectasia (A-T), caused by mutations in the A-T mutated (ATM) gene, is a neurodegenerative disorder affecting ∼1 in 40,000-100,000 children. Recurrent respiratory infections are a common and challenging comorbidity, often leading to the development of bronchiectasis in individuals with A-T. The role of ATM in development of immune memory in response to recurrent respiratory viral infections is not well understood. Here, we infect wild-type (WT) and Atm-null mice with influenza A virus (IAV; HKx31, H3N2) and interrogate the immune memory with secondary infections designed to challenge the B cell memory response with homologous infection (HKx31) and the T cell memory response with heterologous infection (PR8, H1N1). Although Atm-null mice survived primary and secondary infections, they lost more weight than WT mice during secondary infections. This enhanced morbidity to secondary infections was not attributed to failure to effectively clear virus during the primary IAV infection. Instead, Atm-null mice developed persistent peribronchial inflammation, characterized in part by clusters of B220+ B cells. Additionally, levels of select serum antibodies to hemagglutinin-specific IAV were significantly lower in Atm-null than WT mice. These findings reveal that Atm is required to mount a proper memory response to a primary IAV infection, implying that vaccination of children with A-T by itself may not be sufficiently protective against respiratory viral infections.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , Influenza A virus/immunology , Lung/immunology , Mutation , Orthomyxoviridae Infections/immunology , Animals , Ataxia Telangiectasia Mutated Proteins/physiology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Lung/metabolism , Lung/virology , Mice , Mice, Knockout , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology
12.
Proc Natl Acad Sci U S A ; 116(27): 13299-13304, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31209034

ABSTRACT

The synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) is an active ingredient of thousands of commercial herbicides. Multiple species of bacteria degrade 2,4-D via a pathway initiated by the Fe(II) and α-ketoglutarate (Fe/αKG)-dependent aryloxyalkanoate dioxygenases (AADs). Recently, genes encoding 2 AADs have been deployed commercially in herbicide-tolerant crops. Some AADs can also inactivate chiral phenoxypropionate and aryloxyphenoxypropionate (AOPP) herbicides, albeit with varying substrate enantioselectivities. Certain AAD enzymes, such as AAD-1, have expanded utility in weed control systems by enabling the use of diverse modes of action with a single trait. Here, we report 1) the use of a genomic context-based approach to identify 59 additional members of the AAD class, 2) the biochemical characterization of AAD-2 from Bradyrhizobium diazoefficiens USDA 110 as a catalyst to degrade (S)-stereoisomers of chiral synthetic auxins and AOPP herbicides, 3) spectroscopic data that demonstrate the canonical ferryl complex in the AAD-1 reaction, and 4) crystal structures of representatives of the AAD class. Structures of AAD-1, an (R)-enantiomer substrate-specific enzyme, in complexes with a phenoxypropionate synthetic auxin or with AOPP herbicides and of AAD-2, which has the opposite (S)-enantiomeric substrate specificity, reveal the structural basis for stereoselectivity and provide insights into a common catalytic mechanism.


Subject(s)
Dioxygenases/metabolism , Herbicide Resistance , Herbicides/metabolism , Plant Proteins/metabolism , 2,4-Dichlorophenoxyacetic Acid/metabolism , Dioxygenases/chemistry , Herbicides/chemistry , Indoleacetic Acids/metabolism , Plant Proteins/chemistry , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/metabolism , Protein Structure, Tertiary , Glycine max , Stereoisomerism , Structure-Activity Relationship , Zea mays
13.
Front Immunol ; 9: 2131, 2018.
Article in English | MEDLINE | ID: mdl-30283457

ABSTRACT

Invasive fungal infections, including Pneumocystis Pneumonia (PcP), remain frequent life-threatening conditions of patients with adaptive immune defects. While innate immunity helps control pathogen growth early during infection, it is typically not sufficient for complete protection against Pneumocystis and other human fungal pathogens. Alveolar macrophages (AM) possess pattern recognition molecules capable of recognizing antigenic and structural determinants of Pneumocystis. However, this pathogen effectively evades innate immunity to infect both immunocompetent and immunosuppressed hosts, albeit with differing outcomes. During our studies of mouse models of PcP, the FVB/N strain was identified as unique because of its ability to mount a protective innate immune response against Pneumocystis infection. In contrast to other immunocompetent strains, which become transiently infected prior to the onset of adaptive immunity, FVB/N mice rapidly eradicated Pneumocystis before an adaptive immune response was triggered. Furthermore, FVB/N mice remained highly resistant to infection even in the absence of functional T cells. The effector mechanism of innate protection required the action of functional alveolar macrophages, and the adoptive transfer of resistant FVB/N AMs, but not susceptible CB.17 AMs, conferred protection to immunodeficient mice. Macrophage IFNγ receptor signaling was not required for innate resistance, and FVB/N macrophages were found to display markers of alternative activation. IFNγ reprogrammed resistant FVB/N macrophages to a permissive M1 biased phenotype through a mechanism that required direct activation of the macrophage IFNγR. These results demonstrate that appropriately programmed macrophages provide protective innate immunity against this opportunistic fungal pathogen, and suggest that modulating macrophage function may represent a feasible therapeutic strategy to enhance antifungal host defense. The identification of resistant and susceptible macrophages provides a novel platform to study not only the mechanisms of macrophage-mediated antifungal defense, but also the mechanisms by which Pneumocystis evades innate immunity.


Subject(s)
Adaptive Immunity/immunology , Immunity, Innate/immunology , Macrophages, Alveolar/immunology , Pneumocystis Infections/immunology , Animals , Humans , Immunocompetence , Immunocompromised Host , Macrophages/immunology , Macrophages/metabolism , Macrophages, Alveolar/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Mice, SCID , Pneumocystis Infections/microbiology , Signal Transduction/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
14.
Pest Manag Sci ; 74(10): 2265-2276, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29235732

ABSTRACT

Herbicides classified as synthetic auxins have been most commonly used to control broadleaf weeds in a variety of crops and in non-cropland areas since the first synthetic auxin herbicide (SAH), 2,4-D, was introduced to the market in the mid-1940s. The incidence of weed species resistant to SAHs is relatively low considering their long-term global application with 30 broadleaf, 5 grass, and 1 grass-like weed species confirmed resistant to date. An understanding of the context and mechanisms of SAH resistance evolution can inform management practices to sustain the longevity and utility of this important class of herbicides. A symposium was convened during the 2nd Global Herbicide Resistance Challenge (May 2017; Denver, CO, USA) to provide an overview of the current state of knowledge of SAH resistance mechanisms including case studies of weed species resistant to SAHs and perspectives on mitigating resistance development in SAH-tolerant crops. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Herbicide Resistance , Herbicides/pharmacology , Indoleacetic Acids/pharmacology , Plant Weeds/drug effects , Herbicides/chemical synthesis , Indoleacetic Acids/chemical synthesis , Weed Control
15.
Cell Death Differ ; 24(3): 559-570, 2017 03.
Article in English | MEDLINE | ID: mdl-28060378

ABSTRACT

The phagocytosis of apoptotic cells (efferocytosis) shifts macrophages to an anti-inflammatory state through a set of still poorly understood soluble and cell-bound signals. Apoptosis is a common feature of inflamed tissues, and efferocytosis by tissue macrophages is thought to promote the resolution of inflammation. However, it is not clear how the exposure of tissue macrophages to inflammatory cues (e.g., PAMPs, DAMPs) in the early stages of inflammation affects immune outcomes of macrophage-apoptotic cell interactions occurring at later stages of inflammation. To address this, we used low-dose endotoxin conditioning (LEC, 1 ng/ml LPS 18 h) of mouse resident peritoneal macrophages (RPMФ) to model the effects of suboptimal (i.e., non-tolerizing), antecedent TLR activation on macrophage inflammatory responses to apoptotic cells. Compared with unconditioned macrophages (MФ), LEC-MФ showed a significant enhancement of apoptotic cell-driven suppression of many inflammatory cytokines (e.g., TNF, MIP-1ß, MCP-1). We then found that enzymatic depletion of adenosine or inhibition of the adenosine receptor A2a on LEC-MФ abrogated apoptotic cell suppression of TNF, and this suppression was entirely dependent on the ecto-enzyme CD73 (AMPadenosine) but not CD39 (ATPAMP), both of which are highly expressed on RPMФ. In addition to a requirement for CD73, we also show that Adora2a levels in macrophages are a critical determinant of TNF suppression by apoptotic cells. LEC treatment of RPMФ led to a ~3-fold increase in Adora2a and a ~28-fold increase in adenosine sensitivity. Moreover, in RAW264.7 cells, ectopic expression of both A2a and CD73 was required for TNF suppression by apoptotic cells. In mice, mild, TLR4-dependent inflammation in the lungs and peritoneum caused a rapid increase in macrophage Adora2a and Adora2b levels, and CD73 was required to limit neutrophil influx in this peritonitis model. Thus immune signaling via the CD73-A2a axis in macrophages links early inflammatory events to subsequent immune responses to apoptotic cells.


Subject(s)
5'-Nucleotidase/metabolism , Apoptosis/drug effects , Lipopolysaccharides/toxicity , 5'-Nucleotidase/deficiency , 5'-Nucleotidase/genetics , Adenosine/metabolism , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Apyrase/deficiency , Apyrase/genetics , Apyrase/metabolism , Cells, Cultured , Chemokine CXCL10/metabolism , Chemokine CXCL2/metabolism , Coculture Techniques , Cytokines/metabolism , Lung/metabolism , Macrophages, Peritoneal/cytology , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , RAW 264.7 Cells , Receptor, Adenosine A2A/genetics , Receptor, Adenosine A2A/metabolism , Receptor, Adenosine A2B/genetics , Receptor, Adenosine A2B/metabolism , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism
16.
Infect Immun ; 85(4)2017 04.
Article in English | MEDLINE | ID: mdl-28031260

ABSTRACT

Pneumocystis pneumonia (PcP) is a life-threatening infection that affects immunocompromised individuals. Nearly half of all PcP cases occur in those prescribed effective chemoprophylaxis, suggesting that additional preventive methods are needed. To this end, we have identified a unique mouse Pneumocystis surface protein, designated Pneumocystis cross-reactive antigen 1 (Pca1), as a potential vaccine candidate. Mice were immunized with a recombinant fusion protein containing Pca1. Subsequently, CD4+ T cells were depleted, and the mice were exposed to Pneumocystis murina Pca1 immunization completely protected nearly all mice, similar to immunization with whole Pneumocystis organisms. In contrast, all immunized negative-control mice developed PcP. Unexpectedly, Pca1 immunization generated cross-reactive antibody that recognized Pneumocystis jirovecii and Pneumocystis carinii Potential orthologs of Pca1 have been identified in P. jirovecii Such cross-reactivity is rare, and our findings suggest that Pca1 is a conserved antigen and potential vaccine target. The evaluation of Pca1-elicited antibodies in the prevention of PcP in humans deserves further investigation.


Subject(s)
Antigens, Fungal/immunology , Fungal Proteins/immunology , Pneumocystis carinii/immunology , Pneumocystis/immunology , Pneumonia, Pneumocystis/immunology , Animals , Antibodies, Fungal/immunology , Antibody Specificity/immunology , Antigens, Fungal/administration & dosage , Antigens, Fungal/genetics , Cross Reactions , Fungal Proteins/administration & dosage , Fungal Proteins/genetics , Fungal Vaccines/administration & dosage , Fungal Vaccines/immunology , Immunization , Mice , Pneumocystis/genetics , Pneumocystis carinii/genetics , Pneumonia, Pneumocystis/prevention & control
17.
Infect Immun ; 83(12): 4594-603, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26371121

ABSTRACT

Pneumocystis is a respiratory fungal pathogen that causes pneumonia (Pneumocystis pneumonia [PcP]) in immunocompromised patients. Alveolar macrophages are critical effectors for CD4(+) T cell-dependent clearance of Pneumocystis, and previous studies found that alternative macrophage activation accelerates fungal clearance during PcP-related immune reconstitution inflammatory syndrome (IRIS). However, the requirement for either classically or alternatively activated macrophages for Pneumocystis clearance has not been determined. Therefore, RAG2(-/-) mice lacking either the interferon gamma (IFN-γ) receptor (IFN-γR) or interleukin 4 receptor alpha (IL-4Rα) were infected with Pneumocystis. These mice were then immune reconstituted with wild-type lymphocytes to preserve the normal T helper response while preventing downstream effects of Th1 or Th2 effector cytokines on macrophage polarization. As expected, RAG2(-/-) mice developed severe disease but effectively cleared Pneumocystis and resolved IRIS. Neither RAG/IFN-γR(-/-) nor RAG/IL-4Rα(-/-) mice displayed impaired Pneumocystis clearance. However, RAG/IFN-γR(-/-) mice developed a dysregulated immune response, with exacerbated IRIS and greater pulmonary function deficits than those in RAG2 and RAG/IL-4Rα(-/-) mice. RAG/IFN-γR(-/-) mice had elevated numbers of lung CD4(+) T cells, neutrophils, eosinophils, and NK cells but severely depressed numbers of lung CD8(+) T suppressor cells. Impaired lung CD8(+) T cell responses in RAG/IFN-γR(-/-) mice were associated with elevated lung IFN-γ levels, and neutralization of IFN-γ restored the CD8 response. These data demonstrate that restricting the ability of macrophages to polarize in response to Th1 or Th2 cytokines does not impair Pneumocystis clearance. However, a cell type-specific IFN-γ/IFN-γR-dependent mechanism regulates CD8(+) T suppressor cell recruitment, limits immunopathogenesis, preserves lung function, and enhances the resolution of PcP-related IRIS.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immune Reconstitution Inflammatory Syndrome/immunology , Macrophages, Alveolar/immunology , Pneumocystis/immunology , Pneumonia, Pneumocystis/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , CD8-Positive T-Lymphocytes/microbiology , CD8-Positive T-Lymphocytes/pathology , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , Eosinophils/immunology , Eosinophils/microbiology , Eosinophils/pathology , Gene Expression Regulation , Host-Pathogen Interactions , Immune Reconstitution Inflammatory Syndrome/genetics , Immune Reconstitution Inflammatory Syndrome/microbiology , Immune Reconstitution Inflammatory Syndrome/pathology , Killer Cells, Natural/immunology , Killer Cells, Natural/microbiology , Killer Cells, Natural/pathology , Lung/immunology , Lung/microbiology , Lung/pathology , Macrophage Activation , Macrophages, Alveolar/microbiology , Macrophages, Alveolar/pathology , Mice , Mice, Knockout , Mice, SCID , Neutrophils/immunology , Neutrophils/microbiology , Neutrophils/pathology , Pneumocystis/pathogenicity , Pneumonia, Pneumocystis/genetics , Pneumonia, Pneumocystis/microbiology , Pneumonia, Pneumocystis/pathology , Receptors, Cell Surface/deficiency , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology , Receptors, Interferon/deficiency , Receptors, Interferon/genetics , Receptors, Interferon/immunology , Signal Transduction , T-Lymphocytes, Helper-Inducer/microbiology , T-Lymphocytes, Helper-Inducer/pathology , Th1-Th2 Balance , Interferon gamma Receptor
18.
Plant Mol Biol ; 87(4-5): 341-53, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25657118

ABSTRACT

Transgene stacking in trait development process through genetic engineering is becoming complex with increased number of desired traits and multiple modes of action for each trait. We demonstrate here a novel gene stacking strategy by combining bidirectional promoter (BDP) and bicistronic approaches to drive coordinated expression of multi-genes in corn. A unidirectional promoter, Ubiquitin-1 (ZMUbi1), from Zea mays was first converted into a synthetic BDP, such that a single promoter can direct the expression of two genes from each end of the promoter. The BDP system was then combined with a bicistronic organization of genes at both ends of the promoter by using a Thosea asigna virus 2A auto-cleaving domain. With this gene stacking configuration, we have successfully obtained expression in transgenic corn of four transgenes; three transgenes conferring insect (cry34Ab1 and cry35Ab1) and herbicide (aad1) resistance, and a phiyfp reporter gene using a single ZMUbi1 bidirectional promoter. Gene expression analyses of transgenic corn plants confirmed better coordinated expression of the four genes compared to constructs driving each gene by independent unidirectional ZmUbi1 promoter. To our knowledge, this is the first report that demonstrates application of a single promoter for co-regulation of multiple genes in a crop plant. This stacking technology would be useful for engineering metabolic pathways both for basic and applied research.


Subject(s)
Gene Expression Regulation, Plant , Genes, Plant/genetics , Zea mays/genetics , Promoter Regions, Genetic/genetics
19.
Cold Spring Harb Perspect Med ; 4(12): a019828, 2014 Nov 03.
Article in English | MEDLINE | ID: mdl-25367973

ABSTRACT

Since its initial misidentification as a trypanosome some 100 years ago, Pneumocystis has remained recalcitrant to study. Although we have learned much, we still do not have definitive answers to such basic questions as, where is the reservoir of infection, how does Pneumocystis reproduce, what is the mechanism of infection, and are there true species of Pneumocystis? The goal of this review is to provide the reader the most up to date information available about the biology of Pneumocystis and the disease it produces.


Subject(s)
Pneumocystis Infections/microbiology , Pneumocystis/physiology , Humans , Pneumocystis/genetics , Pneumocystis/pathogenicity , Pneumocystis Infections/physiopathology , Pneumonia, Pneumocystis/microbiology , Pneumonia, Pneumocystis/physiopathology , Virulence Factors/genetics
20.
ISRN Obes ; 2014: 638936, 2014.
Article in English | MEDLINE | ID: mdl-24701367

ABSTRACT

Objective. The correlation between obesity and deficient wound healing has long been established. This review examines the current literature on the mechanisms involved in obesity-related perioperative morbidity. Methods. A literature search was performed using Medline, PubMed, Cochrane Library, and Internet searches. Keywords used include obesity, wound healing, adipose healing, and bariatric and surgical complications. Results. Substantial evidence exists demonstrating that obesity is associated with a number of postoperative complications. Specifically in relation to wound healing, explanations include inherent anatomic features of adipose tissue, vascular insufficiencies, cellular and composition modifications, oxidative stress, alterations in immune mediators, and nutritional deficiencies. Most recently, advances made in the field of gene array have allowed researchers to determine a few plausible alterations and deficiencies in obese individuals that contribute to their increased risk of morbidity and mortality, especially wound complications. Conclusion. While the literature discusses how obesity may negatively affect health on various of medical fronts, there is yet to be a comprehensive study detailing all the mechanisms involved in obesity-related morbidities in their entirety. Improved knowledge and understanding of obesity-induced physiological, cellular, molecular, and chemical changes will facilitate better assessments of surgical risks and outcomes and create efficient treatment protocols for improved patient care of the obese patient population.

SELECTION OF CITATIONS
SEARCH DETAIL
...