Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 7015, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37919289

ABSTRACT

SARS-CoV-2 neutralising antibodies provide protection against COVID-19. Evidence from early vaccine trials suggested binding antibody thresholds could serve as surrogate markers of neutralising capacity, but whether these thresholds predict sufficient neutralising capacity against variants of concern (VOCs), and whether this is impacted by vaccine or infection history remains unclear. Here we analyse individuals recovered from, vaccinated or with hybrid immunity against SARS-CoV-2. An NT50 ≥ 100 IU confers protection in vaccine trials, however, as VOC induce a reduction in NT50, we use NT50 ≥ 1000 IU as a cut off for WT NT50 that would retain neutralisation against VOC. In unvaccinated convalescent participants, a receptor binding domain (RBD) IgG of 456 BAU/mL predicts an NT50 against WT of 1000 IU with an accuracy of 80% (95%CI 73-86%). This threshold maintains accuracy in determining loss of protective immunity against VOC in two vaccinated cohorts. It predicts an NT50 < 100 IU against Beta with an accuracy of 80% (95%CI 67-89%) in 2 vaccine dose recipients. In booster vaccine recipients with a history of COVID-19 (hybrid immunity), accuracy is 87% (95%CI 77-94%) in determining an NT50 of <100 IU against BA.5. This analysis provides a discrete threshold that could be used in future clinical studies.


Subject(s)
COVID-19 , Vaccines , Humans , SARS-CoV-2 , COVID-19/prevention & control , Antibodies, Viral , Immunoglobulin G , Antibodies, Neutralizing
2.
Sci Signal ; 16(781): eabo2709, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37071733

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are an abundant population of innate T cells that recognize bacterial ligands and play a key role in host protection against bacterial and viral pathogens. Upon activation, MAIT cells undergo proliferative expansion and increase their production of effector molecules such as cytokines. In this study, we found that both mRNA and protein abundance of the key metabolism regulator and transcription factor MYC was increased in stimulated MAIT cells. Using quantitative mass spectrometry, we identified the activation of two MYC-controlled metabolic pathways, amino acid transport and glycolysis, both of which were necessary for MAIT cell proliferation. Last, we showed that MAIT cells isolated from people with obesity showed decreased MYC mRNA abundance upon activation, which was associated with defective MAIT cell proliferation and functional responses. Collectively, our data uncover the importance of MYC-regulated metabolism for MAIT cell proliferation and provide additional insight into the molecular basis for the functional defects of MAIT cells in obesity.


Subject(s)
Mucosal-Associated Invariant T Cells , Humans , Mucosal-Associated Invariant T Cells/metabolism , Large Neutral Amino Acid-Transporter 1/metabolism , Obesity/metabolism , Glycolysis , Lymphocyte Activation , Cell Proliferation
3.
AIDS ; 36(11): 1477-1491, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35979828

ABSTRACT

OBJECTIVE: Both obesity and HIV infection are characterized by a state of chronic inflammation associated with increased morbidity and mortality. This review aims to assess the available literature on immune dysregulation in obesity and people with HIV infection (PWH). DESIGN: A systematic review of peer-reviewed literature. METHODS: We conducted a systematic literature search of PubMed, Embase, Scopus, and international conference abstracts for articles on the epidemiology of obesity in the general population and in PWH and the pathogenesis of obesity with a focus on inflammation and immune activation. RESULTS: Of the 631 articles selected after title review, 490 met the inclusion criteria and 90 were included in the final selection. The selected studies highlight the increasing prevalence of obesity in PWH and a substantial role for antiretroviral treatment (ART) in its development. Pathogenesis of obesity and its associated inflammation derives from disturbances in adipose tissue (AT) immune function, focused on T-cell and macrophage function, with a switch to pro-inflammatory immune phenotype and resulting increases in pro-inflammatory chemokines, which contribute to the development of metabolic syndrome. Although dysregulation of these pathways is seen in both obesity and HIV, there remains a lack of human studies on AT inflammation in HIV. CONCLUSION: Obesity is an emerging comorbidity in PWH, with a substantial overlap in immune dysregulation patterns seen in both conditions. How this immune dysfunction impacts on development of metabolic complications for both obesity and HIV infection, and whether targeting of AT-derived inflammation will improve outcomes in PWH requires further study.


Subject(s)
HIV Infections , Anti-Retroviral Agents/therapeutic use , HIV Infections/complications , HIV Infections/drug therapy , Host-Pathogen Interactions , Humans , Inflammation , Obesity/complications , Obesity/epidemiology
4.
Obesity (Silver Spring) ; 30(10): 1927-1931, 2022 10.
Article in English | MEDLINE | ID: mdl-35766325

ABSTRACT

OBJECTIVE: Obesity is a major risk factor for severe disease in COVID-19, with increased hospitalization, intensive care unit admission, and mortality. This increased impact of COVID-19 in people with obesity (PWO) is likely driven, in part, by the well-described obesity-induced immune dysregulation. Obesity has also been associated with impaired immune memory in many settings, including weakened responses to hepatitis B, tetanus, rabies, and influenza vaccination. Recently, it was reported that PWO who have COVID-19 have reduced IgG antibody titers with defective neutralizing capabilities. However, it remains unknown whether PWO generate durable T cell immunity to SARS-CoV-2. METHODS: This study investigated SARS-CoV-2-specific T cell responses in a cohort of 40 patients (n = 20 PWO and n = 20 matched control individuals) who had recovered from COVID-19. T cell (CD4+ , CD8+ ) cytokine responses (IFNγ, TNFα) to SARS-CoV-2 peptide pools (spike, membrane) were determined using multicolor flow cytometry. RESULTS: Circulating T cells specific for SARS-CoV-2 were readily detected in the total cohort. PWO displayed comparable levels of SARS-CoV-2 spike- and membrane-specific T cells, with both T cell subsets responding. CONCLUSIONS: These data indicate that PWO who survive COVID-19 generate robust and durable SARS-CoV-2-specific T cell immunity that is equivalent to that seen in those without obesity.


Subject(s)
COVID-19 , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Humans , Immunoglobulin G , Immunologic Memory , Obesity/complications , SARS-CoV-2 , Tumor Necrosis Factor-alpha
SELECTION OF CITATIONS
SEARCH DETAIL
...