Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 743: 140635, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32663689

ABSTRACT

Wildfires burning in watersheds that have been mined and since revegetated pose unique risks to downstream water supplies. A wildfire near Boulder, Colorado, that burned a forested watershed recovering from mining disturbance that occurred 80-160 years ago allowed us to 1) assess arsenic and metal contamination in streams draining the burned area for a five-year period after the wildfire and 2) determine the fire-affected hydrologic drivers that convey arsenic and metals to surface water. Most metal concentrations were low in the circumneutral waters draining the burned area. Water and sediment collected from streams downstream of the burned area had elevated arsenic concentrations during and after post-fire storms. Mining-related deposits were the main source of arsenic to streams. An increased proportion of overland flow relative to infiltration after the fire mobilized arsenic- and metal-rich surface deposits, along with wildfire ash and soil, into streams within and downstream of the burned area. The deposition of this material into stream channels resulted in the remobilization of arsenic for the five-year post-fire study period. It is also possible that enhanced subsurface flow after the fire increased contact of water with arsenic-bearing minerals exposed in underground mine workings. Other studies have reported that wildfire ash can be an important source of arsenic and metals to surface waters, but wildfire ash was not a major source of arsenic in this study. Predicted increases in frequency, size, and intensity of wildfires in the western U.S., a region with widely dispersed historical mines, suggest that the intersection of legacy mining and post-wildfire hydrologic response poses an increasing risk for water supplies.

2.
Sci Total Environ ; 470-471: 551-8, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24176703

ABSTRACT

Contaminants released from wastewater treatment plants can persist in surface waters for substantial distances. Much research has gone into evaluating the fate and transport of these contaminants, but this work has often assumed constant flow from wastewater treatment plants. However, effluent discharge commonly varies widely over a 24-hour period, and this variation controls contaminant loading and can profoundly influence interpretations of environmental data. We show that methodologies relying on the normalization of downstream data to conservative elements can give spurious results, and should not be used unless it can be verified that the same parcel of water was sampled. Lagrangian sampling, which in theory samples the same water parcel as it moves downstream (the Lagrangian parcel), links hydrologic and chemical transformation processes so that the in-stream fate of wastewater contaminants can be quantitatively evaluated. However, precise Lagrangian sampling is difficult, and small deviations - such as missing the Lagrangian parcel by less than 1h - can cause large differences in measured concentrations of all dissolved compounds at downstream sites, leading to erroneous conclusions regarding in-stream processes controlling the fate and transport of wastewater contaminants. Therefore, we have developed a method termed "verified Lagrangian" sampling, which can be used to determine if the Lagrangian parcel was actually sampled, and if it was not, a means for correcting the data to reflect the concentrations which would have been obtained had the Lagrangian parcel been sampled. To apply the method, it is necessary to have concentration data for a number of conservative constituents from the upstream, effluent, and downstream sites, along with upstream and effluent concentrations that are constant over the short-term (typically 2-4h). These corrections can subsequently be applied to all data, including non-conservative constituents. Finally, we show how data from other studies can be corrected.


Subject(s)
Environmental Monitoring , Wastewater/analysis , Water Pollutants/analysis , Rivers/chemistry , Waste Disposal, Fluid , Wastewater/statistics & numerical data , Water Pollution/statistics & numerical data
3.
Environ Sci Technol ; 47(17): 9781-90, 2013 Sep 03.
Article in English | MEDLINE | ID: mdl-23952127

ABSTRACT

In-stream attenuation was determined for 14 neuro-active pharmaceuticals and associated metabolites. Lagrangian sampling, which follows a parcel of water as it moves downstream, was used to link hydrological and chemical transformation processes. Wastewater loading of neuro-active compounds varied considerably over a span of several hours, and thus a sampling regime was used to verify that the Lagrangian parcel was being sampled and a mechanism was developed to correct measured concentrations if it was not. In-stream attenuation over the 5.4-km evaluated reach could be modeled as pseudo-first-order decay for 11 of the 14 evaluated neuro-active pharmaceutical compounds, illustrating the capacity of streams to reduce conveyance of neuro-active compounds downstream. Fluoxetine and N-desmethyl citalopram were the most rapidly attenuated compounds (t1/2 = 3.6 ± 0.3 h, 4.0 ± 0.2 h, respectively). Lamotrigine, 10,11,-dihydro-10,11,-dihydroxy-carbamazepine, and carbamazepine were the most persistent (t1/2 = 12 ± 2.0 h, 12 ± 2.6 h, 21 ± 4.5 h, respectively). Parent compounds (e.g., buproprion, carbamazepine, lamotrigine) generally were more persistent relative to their metabolites. Several compounds (citalopram, venlafaxine, O-desmethyl-venlafaxine) were not attenuated. It was postulated that the primary mechanism of removal for these compounds was interaction with bed sediments and stream biofilms, based on measured concentrations in stream biofilms and a column experiment using stream sediments.


Subject(s)
Central Nervous System Agents/metabolism , Environmental Monitoring/methods , Peripheral Nervous System Agents/metabolism , Rivers/chemistry , Wastewater/analysis , Water Pollutants, Chemical/metabolism , Bacterial Physiological Phenomena , Biofilms , Central Nervous System Agents/analysis , Chromatography, High Pressure Liquid , Colorado , Geologic Sediments/analysis , Peripheral Nervous System Agents/analysis , Seasons , Tandem Mass Spectrometry , Water Pollutants, Chemical/analysis
4.
Sci Total Environ ; 461-462: 519-27, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23751335

ABSTRACT

Concentrations of 17 neuro-active pharmaceuticals and their major metabolites (bupropion, hydroxy-bupropion, erythro-hydrobupropion, threo-hydrobupropion, carbamazepine, 10,11,-dihydro-10,11,-dihydroxycarbamazepine, 10-hydroxy-carbamazepine, citalopram, N-desmethyl-citalopram, fluoxetine, norfluoxetine, gabapentin, lamotrigine, 2-N-glucuronide-lamotrigine, oxcarbazepine, venlafaxine and O-desmethyl-venlafaxine), were measured in treated wastewater and receiving surface waters from 24 locations across Minnesota, USA. The analysis of upstream and downstream sampling sites indicated that the wastewater treatment plants were the major source of the neuro-active pharmaceuticals and associated metabolites in surface waters of Minnesota. Concentrations of parent compound and the associated metabolite varied substantially between treatment plants (concentrations±standard deviation of the parent compound relative to its major metabolite) as illustrated by the following examples; bupropion and hydrobupropion 700±1000 ng L(-1), 2100±1700 ng L(-1), carbamazepine and 10-hydroxy-carbamazepine 480±380 ng L(-1), 360±400 ng L(-1), venlafaxine and O-desmethyl-venlafaxine 1400±1300 ng L(-1), 1800±2300 ng L(-1). Metabolites of the neuro-active compounds were commonly found at higher or comparable concentrations to the parent compounds in wastewater effluent and the receiving surface water. Neuro-active pharmaceuticals and associated metabolites were detected only sporadically in samples upstream from the effluent outfall. Metabolite to parent ratios were used to evaluate transformation, and we determined that ratios in wastewater were much lower than those reported in urine, indicating that the metabolites are relatively more labile than the parent compounds in the treatment plants and in receiving waters. The widespread occurrence of neuro-active pharmaceuticals and metabolites in Minnesota effluents and surface waters indicate that this is likely a global environmental issue, and further understanding of the environmental fate and impacts of these compounds is warranted.


Subject(s)
Central Nervous System Agents/isolation & purification , Environmental Monitoring/statistics & numerical data , Rivers/chemistry , Waste Disposal, Fluid/methods , Wastewater/analysis , Water Pollutants, Chemical/analysis , Central Nervous System Agents/analysis , Central Nervous System Agents/metabolism , Chromatography, Liquid , Environmental Monitoring/methods , Minnesota , Molecular Structure , Solid Phase Extraction , Tandem Mass Spectrometry
5.
Environ Sci Technol ; 46(2): 860-8, 2012 Jan 17.
Article in English | MEDLINE | ID: mdl-22208914

ABSTRACT

The majority of previous research investigating the fate of endocrine-disrupting compounds has focused on single processes generally in controlled laboratory experiments, and limited studies have directly evaluated their fate and transport in rivers. This study evaluated the fate and transport of 4-nonylphenol, 17ß-estradiol, and estrone in a 10-km reach of the Redwood River in southwestern Minnesota. The same parcel of water was sampled as it moved downstream, integrating chemical transformation and hydrologic processes. The conservative tracer bromide was used to track the parcel of water being sampled, and the change in mass of the target compounds relative to bromide was determined at two locations downstream from a wastewater treatment plant effluent outfall. In-stream attenuation coefficients (k(stream)) were calculated by assuming first-order kinetics (negative values correspond to attenuation, whereas positive values indicate production). Attenuation of 17ß-estradiol (k(stream) = -3.2 ± 1.0 day(-1)) was attributed primarily due to sorption and biodegradation by the stream biofilm and bed sediments. Estrone (k(stream) = 0.6 ± 0.8 day(-1)) and 4-nonylphenol (k(stream) = 1.4 ± 1.9 day(-1)) were produced in the evaluated 10-km reach, likely due to biochemical transformation from parent compounds (17ß-estradiol, 4-nonylphenolpolyethoxylates, and 4-nonyphenolpolyethoxycarboxylates). Despite attenuation, these compounds were transported kilometers downstream, and thus additive concentrations from multiple sources and transformation of parent compounds into degradates having estrogenic activity can explain their environmental persistence and widespread observations of biological disruption in surface waters.


Subject(s)
Estradiol/chemistry , Phenols/chemistry , Rivers/chemistry , Water Pollutants, Chemical/chemistry , Biodegradation, Environmental , Biofilms , Environmental Monitoring , Minnesota , Photolysis
6.
Environ Sci Technol ; 45(17): 7275-83, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21846124

ABSTRACT

Stream biofilms play an important role in geochemical processing of organic matter and nutrients, however, the significance of this matrix in sorbing trace organic contaminants is less understood. This study focused on the role of stream biofilms in sorbing steroidal hormones and 4-nonylphenol compounds from surface waters using biofilms colonized in situ on artificial substrata and subsequently transferred to the laboratory for controlled batch sorption experiments. Steroidal hormones and 4-nonylphenol compounds readily sorb to stream biofilms as indicated by organic matter partition coefficients (K(om), L kg(-1)) for 17ß-estradiol (10(2.5-2.8) L kg(-1)), 17α-ethynylestradiol (10(2.5-2.9) L kg(-1)), 4-nonylphenol (10(3.4-4.6) L kg(-1)), 4-nonylphenolmonoethoxylate (10(3.5-4.0) L kg(-1)), and 4-nonylphenoldiethoxylate (10(3.9-4.3) L kg(-1)). Experiments using water quality differences to induce changes in the relative composition of periphyton and heterotrophic bacteria in the stream biofilm did not significantly affect the sorptive properties of the stream biofilm, providing additional evidence that stream biofilms will sorb trace organic compounds under of variety of environmental conditions. Because sorption of the target compounds to stream biofilms was linearly correlated with organic matter content, hydrophobic partition into organic matter appears to be the dominant mechanism. An analysis of 17ß-estradiol and 4-nonylphenol hydrophobic partition into water, biofilm, sediment, and dissolved organic matter matrices at mass/volume ratios typical of smaller rivers showed that the relative importance of the stream biofilm as a sorptive matrix was comparable to bed sediments. Therefore, stream biofilms play a primary role in attenuating these compounds in surface waters. Because the stream biofilm represents the base of the stream ecosystem, accumulation of steroidal hormones and 4-nonylphenol compounds in the stream biofilm may be an exposure pathway for organisms in higher trophic levels.


Subject(s)
Biofilms , Hormones/analysis , Phenols/analysis , Rivers/chemistry , Steroids/analysis , Water Purification/methods , Adsorption , Geologic Sediments/chemistry , Water Pollutants/analysis , Water Quality
7.
Environ Sci Technol ; 45(10): 4370-6, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21520955

ABSTRACT

Biodegradation of select endocrine-disrupting compounds (17ß-estradiol, estrone, 17α-ethynylestradiol, 4-nonylphenol, 4-nonylphenolmonoexthoylate, and 4-nonylphenoldiethoxylate) was evaluated in stream biofilm, sediment, and water matrices collected from locations upstream and downstream from a wastewater treatment plant effluent discharge. Both biologically mediated transformation to intermediate metabolites and biologically mediated mineralization were evaluated in separate time interval experiments. Initial time intervals (0-7 d) evaluated biodegradation by the microbial community dominant at the time of sampling. Later time intervals (70 and 185 d) evaluated the biodegradation potential as the microbial community adapted to the absence of outside energy sources. The sediment matrix was more effective than the biofilm and water matrices at biodegrading 4-nonylphenol and 17ß-estradiol. Biodegradation by the sediment matrix of 17α-ethynylestradiol occurred at later time intervals (70 and 185 d) and was not observed in the biofilm or water matrices. Stream biofilms play an important role in the attenuation of endocrine-disrupting compounds in surface waters due to both biodegradation and sorption processes. Because sorption to stream biofilms and bed sediments occurs on a faster temporal scale (<1 h) than the potential to biodegrade the target compounds (50% mineralization at >185 d), these compounds can accumulate in stream biofilms and sediments.


Subject(s)
Biofilms/growth & development , Endocrine Disruptors/metabolism , Geologic Sediments/chemistry , Gonadal Steroid Hormones/metabolism , Phenols/metabolism , Water Microbiology , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental , Chlorophyll/analysis , Chlorophyll/metabolism , Chlorophyll A , Endocrine Disruptors/analysis , Environmental Monitoring , Estradiol/analysis , Estradiol/metabolism , Estrone/analysis , Estrone/metabolism , Ethinyl Estradiol/analysis , Ethinyl Estradiol/metabolism , Gonadal Steroid Hormones/analysis , Phenols/analysis , Waste Disposal, Fluid , Water Pollutants, Chemical/analysis
8.
Sci Total Environ ; 409(1): 100-11, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-20970168

ABSTRACT

Concentrations of endocrine disrupting chemicals and endocrine disruption in fish were determined in 11 lakes across Minnesota that represent a range of trophic conditions and land uses (urban, agricultural, residential, and forested) and in which wastewater treatment plant discharges were absent. Water, sediment, and passive polar organic integrative samplers (POCIS) were analyzed for steroidal hormones, alkylphenols, bisphenol A, and other organic and inorganic molecular tracers to evaluate potential non-point source inputs into the lakes. Resident fish from the lakes were collected, and caged male fathead minnows were deployed to evaluate endocrine disruption, as indicated by the biological endpoints of plasma vitellogenin and gonadal histology. Endocrine disrupting chemicals, including bisphenol A, 17ß-estradiol, estrone, and 4-nonylphenol were detected in 90% of the lakes at part per trillion concentrations. Endocrine disruption was observed in caged fathead minnows and resident fish in 90% of the lakes. The widespread but variable occurrence of anthropogenic chemicals in the lakes and endocrine disruption in fish indicates that potential sources are diverse, not limited to wastewater treatment plant discharges, and not entirely predictable based on trophic status and land use.


Subject(s)
Endocrine Disruptors/analysis , Endocrine System/drug effects , Environmental Monitoring , Fresh Water/chemistry , Water Pollutants, Chemical/analysis , Animals , Benzhydryl Compounds , Endocrine Disruptors/toxicity , Estradiol/analysis , Estradiol/toxicity , Estrone/analysis , Estrone/toxicity , Fishes/metabolism , Geologic Sediments/chemistry , Minnesota , Phenols/analysis , Phenols/toxicity , Steroids/analysis , Steroids/toxicity , Vitellogenins/metabolism , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...