Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Control Release ; 162(2): 340-8, 2012 Sep 10.
Article in English | MEDLINE | ID: mdl-22800579

ABSTRACT

Gadolinium-labelled nanocomplexes offer prospects for the development of real-time, non-invasive imaging strategies to visualise the location of gene delivery by MRI. In this study, targeted nanoparticle formulations were prepared comprising a cationic liposome (L) containing a Gd-chelated lipid at 10, 15 and 20% by weight of total lipid, a receptor-targeted, DNA-binding peptide (P) and plasmid DNA (D), which electrostatically self-assembled into LPD nanocomplexes. The LPD formulation containing the liposome with 15% Gd-chelated lipid displayed optimal peptide-targeted, transfection efficiency. MRI conspicuity peaked at 4h after incubation of the nanocomplexes with cells, suggesting enhancement by cellular uptake and trafficking. This was supported by time course confocal microscopy analysis of transfections with fluorescently-labelled LPD nanocomplexes. Gd-LPD nanocomplexes delivered to rat brains by convection-enhanced delivery were visible by MRI at 6 h, 24 h and 48 h after administration. Histological brain sections analysed by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) confirmed that the MRI signal was associated with the distribution of Gd(3+) moieties and differentiated MRI signals due to haemorrhage. The transfected brain cells near the injection site appeared to be mostly microglial. This study shows the potential of Gd-LPD nanocomplexes for simultaneous delivery of contrast agents and genes for real-time monitoring of gene therapy in the brain.


Subject(s)
Contrast Media/administration & dosage , DNA/administration & dosage , Gadolinium/administration & dosage , Glycosyltransferases/administration & dosage , Nanoparticles/administration & dosage , Animals , Brain/metabolism , Cell Line, Tumor , Contrast Media/chemistry , Contrast Media/pharmacokinetics , DNA/chemistry , Fatty Acids, Monounsaturated/chemistry , Gadolinium/chemistry , Gadolinium/pharmacokinetics , Glycosyltransferases/chemistry , Humans , Magnetic Resonance Imaging/methods , Male , Nanoparticles/chemistry , Peptides , Phosphatidylethanolamines/chemistry , Quaternary Ammonium Compounds/chemistry , Rats , Rats, Wistar , Transfection/methods
2.
Mol Ther ; 16(5): 907-15, 2008 May.
Article in English | MEDLINE | ID: mdl-18388925

ABSTRACT

Synthetic vectors for cystic fibrosis (CF) gene therapy are required that efficiently and safely transfect airway epithelial cells, rather than alveolar epithelial cells or macrophages, and that are nonimmunogenic, thus allowing for repeated delivery. We have compared several vector systems against these criteria including GL67, polyethylenimine (PEI) 22 and 25 kd and two new, synthetic vector formulations, comprising a cationic, receptor-targeting peptide K(16)GACSERSMNFCG (E), and the cationic liposomes (L) DHDTMA/DOPE or DOSEP3/DOPE. The lipid and peptide formulations self assemble into receptor-targeted nanocomplexes (RTNs) LED-1 and LED-2, respectively, on mixing with plasmid (D). LED-1 transfected airway epithelium efficiently, while LED-2 and GL67 preferentially transfected alveolar cells. PEI transfected airway epithelial cells with high efficiency, but was more toxic to the mice than the other formulations. On repeat dosing, LED-1 was equally as effective as the single dose, while GL67 was 30% less effective and PEI 22 kd displayed a 90% reduction of efficiency on repeated delivery. LED-1 thus was the only formulation that fulfilled the criteria for a CF gene therapy vector while GL67 and LED-2 may be appropriate for other respiratory diseases. Opportunities for PEI depend on a solution to its toxicity problems. LED-1 formulations were stable to nebulization, the most appropriate delivery method for CF.


Subject(s)
Cystic Fibrosis/therapy , Gene Transfer Techniques , Genetic Therapy/methods , Nanotechnology/methods , Animals , Caspase 3/metabolism , Cations , Female , Genetic Therapy/instrumentation , Genetic Vectors , Humans , Lung/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Models, Biological
3.
Biochemistry ; 46(45): 12930-44, 2007 Nov 13.
Article in English | MEDLINE | ID: mdl-17935306

ABSTRACT

Nonviral gene delivery vectors now show good therapeutic potential: however, detailed characterization of the composition and macromolecular organization of such particles remains a challenge. This paper describes experiments to elucidate the structure of a ternary, targeted, lipopolyplex synthetic vector, the LID complex. This consists of a lipid component, Lipofectin (L) (1:1 DOTMA:DOPE), plasmid DNA (D), and a dual-function, cationic peptide component (I) containing DNA condensation and integrin-targeting sequences. Fluorophore-labeled lipid, peptide, and DNA components were used to formulate the vector, and the stoichiometry of the particles was established by fluorescence correlation spectroscopy (FCS). The size of the complex was measured by FCS, and the sizes of LID, L, LD, and ID complexes were measured by dynamic light scattering (DLS). Fluorescence quenching experiments and freeze-fracture electron microscopy were then used to demonstrate the arrangement of the lipid, peptide, and DNA components within the complex. These experiments showed that the cationic portion of the peptide, I, interacts with the plasmid DNA, resulting in a tightly condensed DNA-peptide inner core; this is surrounded by a disordered lipid layer, from which the integrin-targeting sequence of the peptide partially protrudes.


Subject(s)
Genetic Vectors , Integrins , Biophysical Phenomena , Biophysics , DNA/chemistry , Diffusion , Freeze Fracturing , Light , Liposomes/chemical synthesis , Microscopy, Electron , Phosphatidylethanolamines/chemistry , Quaternary Ammonium Compounds/chemistry , Scattering, Radiation , Spectrometry, Fluorescence
4.
Bioconjug Chem ; 18(6): 1800-10, 2007.
Article in English | MEDLINE | ID: mdl-17915956

ABSTRACT

We have developed efficient synthetic routes to two hydrophobic amino acids, suitably protected for solid-phase peptide synthesis, and have successfully synthesized peptides containing these or other hydrophobic amino acids as spacers between a Lys16 moiety and an integrin-targeting motif. These peptides have in turn been used to formulate a range of lipopolyplex vectors with Lipofectin and plasmid DNA. The transfection efficiencies of these vectors and their aggregation behavior in buffers and in serum have been studied. We have shown that vectors containing peptides incorporating long linkers that are entirely hydrophobic are less efficient transfection agents. However, linkers of equivalent length that are in part hydrophobic show improved transfection properties, which is probably due to the improved accessibility of the integrin-binding motif.


Subject(s)
Amino Acids/chemistry , Cross-Linking Reagents/chemistry , Hydrophobic and Hydrophilic Interactions , Lipids/chemistry , Peptides/chemistry , Transfection/methods , Biophysical Phenomena , Biophysics , Molecular Sequence Data , Molecular Structure , Particle Size , Peptides/chemical synthesis
5.
J Drug Target ; 12(4): 185-93, 2004 May.
Article in English | MEDLINE | ID: mdl-15506167

ABSTRACT

Human airway epithelial cell targeting peptides were identified by biopanning on 1HAEo-cells, a well characterised epithelial cell line. Bound phage were recovered after three rounds of binding, high stringency washing and elution, leading to the production of an enriched phage peptide population. DNA sequencing of 56 clones revealed 14 unique sequences. Subsequent binding analysis revealed that 13 of these peptides bound 1HAEo-cells with high affinity. Three peptides, SERSMNF, YGLPHKF and PSGAARA were represented at high frequency. Three clearly defined families of peptide were identified on the basis of sequence motifs including (R/K)SM, L(P/Q)HK and PSG(A/T)ARA. Two peptides, LPHKSMP and LQHKSMP contained two motifs. Further detailed sequence analysis by comparison of peptide sequences with the SWISSPROT protein database revealed that some of the peptides closely resembled the cell binding proteins of viral and bacterial pathogens including Herpes Simplex Virus, rotavirus, Mycoplasma pneumoniae and rhinovirus, the latter two being respiratory pathogens, as well as peptide YGLPHKF having similarity to a protein of unknown function from the respiratory pathogen Legionella pneumophila. Peptides were incorporated into gene delivery formulations with the cationic lipid Lipofectin and plasmid DNA and shown to confer a high degree of transfection efficiency and specificity in 1HAEo-cells. Improved transfection efficiency and specificity was also observed in human endothelial cells, fibroblasts and keratinocytes. Therefore, on the basis of clone frequency after biopanning, cell binding affinity, peptide sequence conservation and pathogenic similarity, we have identified 3 novel peptide families and 5 specific peptides that have the potential for gene transfer to respiratory epithelium in vivo as well as providing useful in vitro transfection reagents for primary human cell types of scientific and commercial interest.


Subject(s)
Drug Carriers/chemistry , Epithelial Cells/metabolism , Peptides/chemistry , Respiratory System/metabolism , Transfection , Amino Acid Sequence , Cell Line , Drug Carriers/metabolism , Enzyme-Linked Immunosorbent Assay , Genes, Reporter , Genetic Vectors , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Humans , Peptide Library , Peptides/metabolism , Phosphatidylethanolamines , Protein Binding , Respiratory System/cytology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...