Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetes Obes Metab ; 19(12): 1722-1731, 2017 12.
Article in English | MEDLINE | ID: mdl-28497570

ABSTRACT

AIMS: To conduct a comprehensive pre-clinical study of the novel ultra-long acting insulin analogue LAPS Insulin115. METHODS: Pharmacokinetic/pharmacodynamic studies comparing LAPS Insulin115 with other basal insulins were conducted in genetically diabetic (db/db) mice. Insulin signalling in the major target organs was analysed using Western blot after single subcutaneous injection in wild-type male Wistar rats. Using in vitro assays we analysed transendothelial transport, insulin receptor (IR) interaction, and the mitogenic and metabolic properties of LAPS Insulin115. Furthermore, IR downregulation after long-term exposure to high concentrations of LAPS Insulin115 was analysed using an in vitro desensitization/resensitization model. RESULTS: The novel Fc-conjugated insulin derivative LAPS Insulin115 showed an extensively prolonged pharmacokinetic and pharmacodynamic profile in rodents. Despite its size of 59 kDa, LAPS Insulin115 passes the vascular endothelial barrier and induces insulin signalling in all major target tissues in rats. In vitro, LAPS Insulin115 showed a very slow onset of action because of its reduced IR affinity; however, after long-term stimulation it was equipotent in respect to its metabolic potency and showed no increased mitogenic action when compared with regular insulin. Remarkably, under conditions of chronic exposure, LAPS Insulin115 does not induce irreversible desensitization of target cells, which is probably attributable to much less prominent IR downregulation. CONCLUSION: Thus, LAPS Insulin115 exhibits a unique in vivo and in vitro profile and thereby represents an excellent candidate for a once-weekly insulin analogue.


Subject(s)
Drugs, Investigational/pharmacology , Gene Expression Regulation/drug effects , Hypoglycemic Agents/pharmacology , Immunoglobulin Fc Fragments/pharmacology , Insulin, Long-Acting/pharmacology , Receptor, Insulin/agonists , Signal Transduction/drug effects , Absorption, Physiological , Animals , Cell Line , Cells, Cultured , Drugs, Investigational/chemistry , Drugs, Investigational/metabolism , Drugs, Investigational/therapeutic use , Half-Life , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/metabolism , Hypoglycemic Agents/therapeutic use , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin Fc Fragments/therapeutic use , Insulin, Long-Acting/genetics , Insulin, Long-Acting/metabolism , Insulin, Long-Acting/therapeutic use , Intra-Abdominal Fat/drug effects , Intra-Abdominal Fat/metabolism , Male , Mice, Mutant Strains , Organ Specificity , Phosphorylation/drug effects , Protein Processing, Post-Translational/drug effects , Rats, Wistar , Receptor, Insulin/antagonists & inhibitors , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/therapeutic use , Toxicity Tests, Chronic
2.
Cardiovasc Diabetol ; 15: 96, 2016 Jul 15.
Article in English | MEDLINE | ID: mdl-27422524

ABSTRACT

BACKGROUND: The effects of insulin on cardiomyocytes, such as positive inotropic action and glucose uptake are well described. However, in vitro studies comparing long-acting insulin analogues with regard to cardiomyocyte signalling and function have not been systematically conducted. METHODS: Insulin receptor (IR) binding was assessed using membrane embedded and solubilised IR preparations. Insulin signalling was analysed in adult rat ventricular myocytes (ARVM) and HL-1 cardiac cells. Inotropic effects were examined in ARVM and the contribution of Akt to this effect was assessed by specific inhibition with triciribine. Furthermore, beating-rate in Cor.4U(®) human cardiomyocytes, glucose uptake in HL-1 cells, and prevention from H2O2 induced caspase 3/7 activation in cardiac cells overexpressing the human insulin receptor (H9c2-E2) were analysed. One-way ANOVA was performed to determine significance between conditions. RESULTS: Insulin degludec showed significant lower IR affinity in membrane embedded IR preparations. In HL-1 cardiomyocytes, stimulation with insulin degludec resulted in a lower Akt(Ser(473)) and Akt(Thr(308)) phosphorylation compared to insulin, insulin glargine and its active metabolite M1 after 5- and 10-min incubation. After 60-min treatment, phosphorylation of Akt was comparable for all insulin analogues. Stimulation of glucose uptake in HL-1 cells was increased by 40-60 %, with a similar result for all analogues. Incubation of electrically paced ARVM resulted for all insulins in a significantly increased sarcomere shortening, contractility- and relaxation-velocity. This positive inotropic effect of all insulins was Akt dependent. Additionally, in Cor.4U(®) cardiomyocytes a 10-20 % increased beating-rate was detected for all insulins, with slower onset of action in cells treated with insulin degludec. H9c2-E2 cells challenged with H2O2 showed a fivefold increase in caspase 3/7 activation, which could be abrogated by all insulins used. CONCLUSIONS: In conclusion, we compared for the first time the signalling and functional impact of the long-acting insulin analogues insulin glargine and insulin degludec in cardiomyocyte cell models. We demonstrated similar efficacy under steady-state conditions relative to regular insulin in functional endpoint experiments. However, it remains to be shown how these results translate to the in vivo situation.


Subject(s)
Blood Glucose/drug effects , Hypoglycemic Agents/pharmacology , Insulin Glargine/pharmacology , Insulin, Long-Acting/pharmacology , Myocytes, Cardiac/drug effects , Signal Transduction/drug effects , Animals , Diabetes Mellitus, Type 1/metabolism , Hypoglycemia/metabolism , Mice , Myocytes, Cardiac/metabolism , Rats , Receptor, Insulin/metabolism
3.
J Hypertens ; 34(5): 869-76, 2016 May.
Article in English | MEDLINE | ID: mdl-26895560

ABSTRACT

BACKGROUND: Dipeptidyl peptidase-4 (DPP4) is a key protein in glucose homeostasis and a pharmacological target in type 2 diabetes mellitus. This study explored whether the novel adipokine soluble DPP4 (sDPP4) can cause endothelial dysfunction, an early marker of impaired vascular reactivity. METHOD: Reactivity was studied in mesenteric arteries from 3-month-old female mice, using a small vessel myograph. Thromboxane A2 (TXA2) release was explored in cultured human coronary artery endothelial cells by enzyme immunoassay. RESULTS: Neither the contractility to noradrenaline nor the endothelium-independent relaxations induced by sodium nitroprusside were modified by sDPP4. However, sDPP4 impaired in a concentration-dependent manner the endothelium-dependent relaxation elicited by acetylcholine. The DPP4 inhibitors K579 and linagliptin prevented the defective relaxation induced by sDPP4, as did the protease-activated receptor 2 (PAR2) inhibitor GB83. Downstream of PAR2, the cyclooxygenase (COX) inhibitor indomethacin, the COX2 inhibitor celecoxib or the thromboxane receptors blocker SQ29548 prevented the deleterious effects of sDPP4. Accordingly, sDPP4 triggered the release of TXA2 by endothelial cells, whereas TXA2 release was prevented by inhibiting DPP4, PAR2 or COX. CONCLUSION: In summary, these findings reveal sDPP4 as a direct mediator of endothelial dysfunction, acting through PAR2 activation and the release of vasoconstrictor prostanoids. By interfering with these actions, DPP4 inhibitors might help preserving endothelial function in the context of cardiometabolic diseases.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Dipeptidyl Peptidase 4/metabolism , Endothelium, Vascular/metabolism , Receptor, PAR-2/metabolism , Thromboxane A2/metabolism , Animals , Dipeptidyl Peptidase 4/adverse effects , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Female , Mesenteric Arteries/metabolism , Mice , Mice, Inbred C57BL
4.
Front Immunol ; 6: 386, 2015.
Article in English | MEDLINE | ID: mdl-26284071

ABSTRACT

Dipeptidyl-peptidase 4 (DPP4) is a glycoprotein of 110 kDa, which is ubiquitously expressed on the surface of a variety of cells. This exopeptidase selectively cleaves N-terminal dipeptides from a variety of substrates, including cytokines, growth factors, neuropeptides, and the incretin hormones. Expression of DPP4 is substantially dysregulated in a variety of disease states including inflammation, cancer, obesity, and diabetes. Since the incretin hormones, glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide (GIP), are major regulators of post-prandial insulin secretion, inhibition of DPP4 by the gliptin family of drugs has gained considerable interest for the therapy of type 2 diabetic patients. In this review, we summarize the current knowledge on the DPP4-incretin axis and evaluate most recent findings on DPP4 inhibitors. Furthermore, DPP4 as a type II transmembrane protein is also known to be cleaved from the cell membrane involving different metalloproteases in a cell-type-specific manner. Circulating, soluble DPP4 has been identified as a new adipokine, which exerts both para- and endocrine effects. Recently, a novel receptor for soluble DPP4 has been identified, and data are accumulating that the adipokine-related effects of DPP4 may play an important role in the pathogenesis of cardiovascular disease. Importantly, circulating DPP4 is augmented in obese and type 2 diabetic subjects, and it may represent a molecular link between obesity and vascular dysfunction. A critical evaluation of the impact of circulating DPP4 is presented, and the potential role of DPP4 inhibition at this level is also discussed.

5.
Biochim Biophys Acta ; 1842(9): 1613-21, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24928308

ABSTRACT

DPP4 is an ubiquitously expressed cell-surface protease that is shedded to the circulation as soluble DPP4 (sDPP4). We recently identified sDPP4 as a novel adipokine potentially linking obesity to the metabolic syndrome. The aim of this study was to investigate direct effects of sDPP4 on human vascular smooth muscle cells (hVSMCs) and to identify responsible signaling pathways. Using physiological concentrations of sDPP4, we could observe a concentration-dependent activation of ERK1/2 (3-fold) after 6h, which remained stable for up to 24h. Additionally, sDPP4 treatment induced a 1.5-fold phosphorylation of the NF-κB subunit p65. In accordance with sDPP4-induced stress and inflammatory signaling, sDPP4 also stimulates hVSMC proliferation. Furthermore we could observe an increased expression and secretion of pro-inflammatory cytokines like interleukin (IL)-6, IL-8 and MCP-1 (2.5-, 2.4- and 1.5-fold, respectively) by the sDPP4 treatment. All direct effects of sDPP4 on signaling, proliferation and inflammation could completely be prevented by DPP4 inhibition. Bioinformatic analysis and signaling signature induced by sDPP4 suggest that sDPP4 might be an agonist for PAR2. After the silencing of PAR2, the sDPP4-induced ERK activation as well as the proliferation was totally abolished. Additionally, the sDPP4-induced upregulation of IL-6 and IL-8 could completely be prevented by the PAR2 silencing. In conclusion, we show for the first time that sDPP4 directly activates the MAPK and NF-κB signaling cascade involving PAR2 and resulting in the induction of inflammation and proliferation of hVSMC. Thus, our in vitro data might extend the current view of sDPP4 action and shed light on cardiovascular effects of DPP4-inhibitors.


Subject(s)
Cell Proliferation , Dipeptidyl Peptidase 4/metabolism , Inflammation/pathology , Muscle, Smooth, Vascular/pathology , Receptor, PAR-2/metabolism , Amino Acid Sequence , Blotting, Western , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Dipeptides/pharmacology , Dipeptidyl Peptidase 4/genetics , Enzyme-Linked Immunosorbent Assay , Humans , Inflammation/genetics , Inflammation/metabolism , Isoxazoles/pharmacology , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Molecular Sequence Data , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Phosphorylation/drug effects , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Receptor, PAR-2/antagonists & inhibitors , Receptor, PAR-2/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid
6.
Front Horm Res ; 43: 79-92, 2014.
Article in English | MEDLINE | ID: mdl-24943300

ABSTRACT

Adipose tissue (AT) was long perceived as a passive lipid storage depot but it is now considered as an endocrine organ that produces a large number of mediators that affect metabolism, inflammation and coagulation. In obesity, the increased size of adipocytes and chronic low-grade inflammation within AT alter its normal physiological function. AT dysfunction results in altered production and secretion of adipokines, which in turn affect several tissues, e.g. the liver, skeletal muscles and vasculature, in a para- or endocrine manner. Numerous circulating proinflammatory mediators involved in the development of cardiovascular disease (CVD) are directly released from adipocytes, thereby linking obesity to an increased cardiovascular risk. In the current chapter, we focus, on the one hand, on a small selection of novel adipokines with a potentially strong link to CVD: soluble dipeptidyl peptidase-4, visfatin and lipocalin-2. On the other hand, we summarize the most recent findings on the novel cardioprotective adipokines omentin and apelin.


Subject(s)
Adipose Tissue/physiopathology , Cardiovascular Diseases/etiology , Inflammation/physiopathology , Obesity/physiopathology , Acute-Phase Proteins/metabolism , Adipocytes/metabolism , Adipokines/biosynthesis , Apelin , Cytokines/physiology , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , GPI-Linked Proteins/physiology , Glucagon-Like Peptide 1/physiology , Humans , Intercellular Signaling Peptides and Proteins/physiology , Lectins/physiology , Lipocalin-2 , Lipocalins/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , Obesity/complications , Proto-Oncogene Proteins/metabolism , Risk Factors
7.
Biochim Biophys Acta ; 1842(2): 275-83, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24333576

ABSTRACT

Cardiovascular complications are common in patients with type 2 diabetes. Adipokines have been implicated in the induction of proliferative and pro-atherogenic alterations in human vascular smooth muscle cells (hVSMC). Other reports demonstrated the importance of the miRNA cluster miR-143/145 in the regulation of VSMC homeostasis and insulin sensitivity. Here we investigated whether the detrimental effects of adipokines on hVSMC function could be ascribed to alterations in miR-143/145 expression. The exposure of hVSMC to conditioned media (CM) from primary human subcutaneous adipocytes increased the expression of smooth muscle α-actin (SMA), and the miR-143/145 cluster, but markedly impaired the insulin-mediated phosphorylation of Akt and its substrate endothelial nitric oxide synthase (eNOS). Furthermore, CM promoted the phosphorylation of SMAD2 and p38, which have both been linked to miR-143/145 induction. Accordingly, the induction of miR-143/145 as well as the inhibition of insulin-mediated Akt- and eNOS-phosphorylation was prevented when hVSMC were treated with pharmacological inhibitors for Alk-4/5/7 and p38 before the addition of CM. The transfection of hVSMC with precursor miR-143, but not with precursor miR-145, resulted in impaired insulin-mediated phosphorylation of Akt and eNOS. This inhibition of insulin signaling by CM and miR-143 is associated with a reduction in the expression of the oxysterol-binding protein-related protein 8 (ORP8). Finally, the knock-down of ORP8 resulted in impaired insulin-mediated phosphorylation of Akt in hVSMC. Thus, the detrimental effects of adipocyte-derived conditioned media on insulin action in primary hVSMC can be ascribed to the Alk- and p38-dependent induction of miR-143 and subsequent downregulation of ORP8.


Subject(s)
Adipocytes/metabolism , Culture Media, Conditioned/pharmacology , Insulin/pharmacology , MicroRNAs/genetics , Myocytes, Smooth Muscle/drug effects , Adipocytes/cytology , Adult , Blotting, Western , Cell Differentiation/drug effects , Cells, Cultured , Culture Media, Conditioned/metabolism , Female , HEK293 Cells , Humans , Insulin/metabolism , Middle Aged , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Phosphorylation/drug effects , RNA Interference , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Smad2 Protein/genetics , Smad2 Protein/metabolism , Up-Regulation/drug effects , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
8.
Diabetes ; 60(7): 1917-25, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21593202

ABSTRACT

OBJECTIVE: Comprehensive proteomic profiling of the human adipocyte secretome identified dipeptidyl peptidase 4 (DPP4) as a novel adipokine. This study assessed the functional implications of the adipokine DPP4 and its association to the metabolic syndrome. RESEARCH DESIGN AND METHODS: Human adipocytes and skeletal and smooth muscle cells were used to monitor DPP4 release and assess the effects of soluble DPP4 on insulin signaling. In lean and obese subjects, depot-specific expression of DPP4 and its release from adipose tissue explants were determined and correlated to parameters of the metabolic syndrome. RESULTS: Fully differentiated adipocytes exhibit a substantially higher release of DPP4 compared with preadipocytes or macrophages. Direct addition of DPP4 to fat and skeletal and smooth muscle cells impairs insulin signaling. A fivefold higher level of DPP4 protein expression was seen in visceral compared with subcutaneous fat of obese patients, with no regional difference in lean subjects. DPP4 serum concentrations significantly correlated with adipocyte size. By using adipose tissue explants from lean and obese subjects, we observed a twofold increase in DPP4 release that strongly correlated with adipocyte volume and parameters of the metabolic syndrome and was decreased to the lean level after weight reduction. DPP4 released from adipose tissue correlated positively with an increasing risk score for the metabolic syndrome. CONCLUSIONS: DPP4 is a novel adipokine that may impair insulin sensitivity in an autocrine and paracrine fashion. Furthermore, DPP4 release strongly correlates with adipocyte size, potentially representing an important source of DPP4 in obesity. Therefore, we suggest that DPP4 may be involved in linking adipose tissue and the metabolic syndrome.


Subject(s)
Adipocytes/enzymology , Adipokines/physiology , Dipeptidyl Peptidase 4/physiology , Metabolic Syndrome/genetics , Obesity/genetics , Adipocytes/cytology , Adipose Tissue/drug effects , Adult , Aged , Aged, 80 and over , Cells, Cultured , Dipeptidyl Peptidase 4/metabolism , Female , Humans , Insulin , Male , Middle Aged , Muscle, Skeletal/cytology , Muscle, Skeletal/enzymology , Muscle, Smooth, Vascular/cytology , Obesity/enzymology , Proteomics , Thinness/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...